Publications by authors named "Lawrence B. Alemany"

Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination.

View Article and Find Full Text PDF

An understanding of the rotary cycle of molecular motors (MMs), a key component of an approach to opening cells using mechanical motion, is important in furthering the research. Nuclear magnetic resonance (NMR) spectroscopy was used for analysis of illuminated light-active MMs. We found that the presence of a ,-dimethylethylenediamine in a position conjugated to the central olefin results in changes to the rotation of a second-generation Feringa-type MM.

View Article and Find Full Text PDF

Antibiotic resistance is a growing health threat. There is an urgent and critical need to develop new antimicrobial modalities and therapies. Here, a set of hemithioindigo (HTI)-based molecular machines capable of specifically killing Gram-positive bacteria within minutes of activation with visible light (455 nm at 65 mW cm ) that are safe for mammalian cells is described.

View Article and Find Full Text PDF

The synthesis of Al nanocrystals (Al NCs) is a rapidly expanding field, but there are few strategies for size and morphology control. Here we introduce a dual catalyst approach for the synthesis of Al NCs to control both NC size and shape. By using one catalyst that nucleates growth more rapidly than a second catalyst whose ligands affect NC morphology during growth, one can obtain both size and shape control of the resulting Al NCs.

View Article and Find Full Text PDF

The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant , in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms.

View Article and Find Full Text PDF

Two-dimensional (2D) rigid polymers provide an opportunity to translate the high-strength, high-modulus mechanical performance of classic rigid-rod 1D polymers across a plane by extending covalent bonding into two dimensions while simultaneously reducing density due to microporosity by structural design. Thus far, this potential has remained elusive because of the challenge of producing high-quality 2D polymer thin films, particularly those with irreversible, rigid benzazole linkages. Here, we present a facile two-step process that allows the deposition of a uniform intermediate film network via reversible, non-covalent interactions, followed by a subsequent solid-state annealing step that facilitates the irreversible conversion to a 2D covalently bonded polymer product with benzoxazole linkages.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas-phase fluorination technique is reported.

View Article and Find Full Text PDF

Atomistic molecular dynamics simulations are used to predict H NMR relaxation of water from paramagnetic Gd ions in solution at 25 °C. Simulations of the relaxivity dispersion function computed from the Gd-H dipole-dipole autocorrelation function agree within ≃8% of measurements in the range ≃ 5 ↔ 500 MHz, without any adjustable parameters in the interpretation of the simulations, and without any relaxation models. The simulation results are discussed in the context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed outer-sphere relaxation model.

View Article and Find Full Text PDF

As graphene enjoys worldwide research and deployment, the biological impact, geologic degradation, environmental retention, and even some physical phenomena remain less well studied. Bulk production of C-graphene yields a powerful route to study all of these questions. Gram-scale synthesis of high-quality and high-purity turbostratic flash graphene with varying amounts of C-enrichment, from 5% to 99%, is reported here.

View Article and Find Full Text PDF

Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling into bacterial cell walls and increasing susceptibility of drug-resistant bacteria to recently ineffective antibiotics.

View Article and Find Full Text PDF

Recently, synthetic molecular nanomachines (MNMs) that rotate unidirectionally in response to UV light excitation have been used to produce nanomechanical action on live cells to kill them through the drilling of holes in their cell membranes. In the work here, visible-light-absorbing MNMs are designed and synthesized to enable nanomechanical activation by 405 nm light, thereby using a wavelength of light that is less phototoxic than the previously employed UV wavelengths. Visible-light-absorbing MNMs that kill pancreatic cancer cells upon response to light activation are demonstrated.

View Article and Find Full Text PDF

We report the first direct catalytic enantioselective allylation of acyclic α-ketiminoesters to afford α-allyl-α-aryl and α-allyl-α-trifluoromethyl amino esters in excellent isolated yield (91-99%) and with high optical purity (90-99+% ). The allylation proceeds on a gram scale with 5-10 mol % of indium(I) iodide and commercially available BOX-type ligands. The allylated products are easily converted to enantiomerically enriched α-substituted proline derivatives.

View Article and Find Full Text PDF

Using two-photon excitation (2PE), molecular nanomachines (MNMs) are able to drill through cell membranes and kill the cells. This avoids the use of the more damaging ultraviolet light that has been used formerly to induce this nanomechanical cell-killing effect. Since 2PE is inherently confocal, enormous precision can be realized.

View Article and Find Full Text PDF

Herein, we present a general synthetic strategy for the preparation of 3-, 4-, 5-, and 6-membered heterocyclic unnatural amino acid derivatives by exploiting facile Mannich-type reactions between readily available N-alkyl- and N-aryl-substituted diisopropyl iminomalonates and a wide range of soft anionic C-nucleophiles without using any catalyst or additive. Fully substituted aziridines were obtained in a single step when enolates of α-bromo esters were employed as nucleophiles. Enantiomerically enriched azetidines, γ-lactones, and tetrahydroquinolines were obtained via a two-step catalytic asymmetric reduction and cyclization sequence from ketone enolate-derived adducts.

View Article and Find Full Text PDF

Shishijimicin A is a scarce marine natural product with highly potent cytotoxicities, making it a potential payload or a lead compound for designed antibody-drug conjugates. Herein, we describe an improved total synthesis of shishijimicin A and the design, synthesis, and biological evaluation of a series of analogues. Equipped with appropriate functionalities for linker attachment, a number of these analogues exhibited extremely potent cytotoxicities for the intended purposes.

View Article and Find Full Text PDF

Namenamicin is a rare natural product possessing potent cytotoxic properties that may prove useful as a lead compound for payloads of antibody-drug conjugates (ADCs). Its scarcity, coupled with the uncertainty of its full absolute configuration, elevates it to an attractive synthetic target. Herein we describe the total synthesis of the two C7'-epimers of namenamicin and assign its complete structure, opening the way for further chemical and biological studies toward the discovery of potent payloads for ADCs directed toward targeted cancer therapies.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the fluorination of hexagonal boron nitride (h-BN), transforming it into a wide bandgap semiconductor by introducing defect levels.
  • Fluorine's electrophilic nature alters charge distribution around neighboring nitrogen atoms, resulting in weak ferromagnetism at room temperature.
  • This modification enhances h-BN's potential applications in electronic and magnetic devices, paving the way for research on stable two-dimensional magnetic semiconductors.
View Article and Find Full Text PDF

As a result of the unique physical and electrical properties, graphene continues to attract the interest of a large segment of the scientific community. Since graphene does not occur naturally, the ability to exfoliate and isolate individual layers of graphene from graphite is an important and challenging process. The interlayer cohesive energy of graphite that results from van der Waals attractions has been determined experimentally to be 61 meV per carbon atom (61 meV/C atom).

View Article and Find Full Text PDF

The hydrogenation of commercial graphite using lithium/ammonia as the reducing agent and tert-butyl alcohol as a proton source was investigated. Characterization of the products after successive reductions of the same material by high-resolution transmission electron microscopy revealed a new material that was replete with edge and circular dislocations. Analysis by solid-state (13)C NMR spectroscopy indicates that after three reductions, the remaining aromatic rings appear to be interior benzene rings.

View Article and Find Full Text PDF

Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors.

View Article and Find Full Text PDF

Bandgaps of photoluminescent graphene quantum dots (GQDs) synthesized from anthracite have been engineered by controlling the size of GQDs in two ways: either chemical oxidative treatment and separation by cross-flow ultrafiltration, or by a facile one-step chemical synthesis using successively higher temperatures to render smaller GQDs. Using these methods, GQDs were synthesized with tailored sizes and bandgaps. The GQDs emit light from blue-green (2.

View Article and Find Full Text PDF

Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures.

View Article and Find Full Text PDF

Natural gas is considered the cleanest and recently the most abundant fossil fuel source, yet when it is extracted from wells, it often contains 10-20 mol% carbon dioxide (20-40 wt%), which is generally vented to the atmosphere. Efforts are underway to contain this carbon dioxide at the well-head using inexpensive and non-corrosive methods. Here we report nucleophilic porous carbons are synthesized from simple and inexpensive carbon-sulphur and carbon-nitrogen precursors.

View Article and Find Full Text PDF