Background: The labeled sizes of surgical valve prostheses and their discordance with the physical internal valve orifice sizes has long been a controversy in the cardiac surgery community, leading many to believe it to be a contributing factor in prosthesis-patient mismatch following valvular replacement surgery. In an attempt to address this issue, the International Organization for Standardization (ISO) 5840-2:2021 standard for surgical valve prostheses recommends that a new sizing parameter, namely, the effective orifice diameter, be provided in labeling by all manufacturers as an indicator of the true flow-passing capacity of a prosthetic valve.
Methods: The ISO Cardiac Valves Working Group conducted a multi-laboratory round-robin study to investigate whether the effective orifice diameter of a prosthetic surgical valve could be derived repeatably and reproducibly through steady forward-flow testing.
Background: The practical application of 'virtual' (computed) fractional flow reserve (vFFR) based on invasive coronary angiogram (ICA) images is unknown. The objective of this cohort study was to investigate the potential of vFFR to guide the management of unselected patients undergoing ICA. The hypothesis was that it changes management in >10% of cases.
View Article and Find Full Text PDFBackground: Increased coronary microvascular resistance (CMVR) is associated with coronary microvascular dysfunction (CMD). Although CMD is more common in women, sex-specific differences in CMVR have not been demonstrated previously.
Aim: To compare CMVR between men and women being investigated for chest pain.
The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease.
View Article and Find Full Text PDFAims: Angiography-derived fractional flow reserve (angio-FFR) permits physiological lesion assessment without the need for an invasive pressure wire or induction of hyperaemia. However, accuracy is limited by assumptions made when defining the distal boundary, namely coronary microvascular resistance (CMVR). We sought to determine whether machine learning (ML) techniques could provide a patient-specific estimate of CMVR and therefore improve the accuracy of angio-FFR.
View Article and Find Full Text PDFFractional flow reserve (FFR) is the current gold-standard invasive assessment of coronary artery disease (CAD). FFR reports coronary blood flow (CBF) as a fraction of a hypothetical and unknown normal value. Although used routinely to diagnose CAD and guide treatment, how accurately FFR predicts actual CBF changes remains unknown.
View Article and Find Full Text PDFAims: International guidelines mandate the use of fractional flow reserve (FFR) and/or non-hyperaemic pressure ratios to assess the physiological significance of moderate coronary artery lesions to guide revascularization decisions. However, they remain underused such that visual estimation of lesion severity continues to be the predominant decision-making tool. It would be pragmatic to have an improved understanding of the relationship between lesion morphology and haemodynamics.
View Article and Find Full Text PDFThe current management of acute coronary syndromes (ACS) is with an invasive strategy to guide treatment. However, identifying the lesions which are physiologically significant can be challenging. Non-invasive imaging is generally not appropriate or timely in the acute setting, so the decision is generally based upon visual assessment of the angiogram, supplemented in a small minority by invasive pressure wire studies using fractional flow reserve (FFR) or related indices.
View Article and Find Full Text PDFThree dimensional (3D) coronary anatomy, reconstructed from coronary angiography (CA), is now being used as the basis to compute 'virtual' fractional flow reserve (vFFR), and thereby guide treatment decisions in patients with coronary artery disease (CAD). Reconstruction accuracy is therefore important. Yet the methods required remain poorly validated.
View Article and Find Full Text PDFBackground: Using fractional flow reserve (FFR) to guide percutaneous coronary intervention for patients with coronary artery disease (CAD) improves clinical decision making but remains underused. Virtual FFR (vFFR), computed from angiographic images, permits physiologic assessment without a pressure wire and can be extended to virtual coronary intervention (VCI) to facilitate treatment planning. This study investigated the effect of adding vFFR and VCI to angiography in patient assessment and management.
View Article and Find Full Text PDFNon-invasive estimation of the pressure gradient in cardiovascular stenosis has much clinical importance in assisting the diagnosis and treatment of stenotic diseases. In this research, a systematic comparison is conducted to investigate the accuracy of a group of stenosis models against the MRI- and catheter-measured patient data under the aortic coarctation condition. Eight analytical stenosis models, including six from the literature and two proposed in this study, are investigated to examine their prediction accuracy against the clinical data.
View Article and Find Full Text PDFThe role of 'stand-alone' coronary angiography (CAG) in the management of patients with chronic coronary syndromes is the subject of debate, with arguments for its replacement with CT angiography on the one hand and its confinement to the interventional cardiac catheter laboratory on the other. Nevertheless, it remains the standard of care in most centres. Recently, computational methods have been developed in which the laws of fluid dynamics can be applied to angiographic images to yield 'virtual' (computed) measures of blood flow, such as fractional flow reserve.
View Article and Find Full Text PDFAims: Ischaemic heart disease is the reduction of myocardial blood flow, caused by epicardial and/or microvascular disease. Both are common and prognostically important conditions, with distinct guideline-indicated management. Fractional flow reserve (FFR) is the current gold-standard assessment of epicardial coronary disease but is only a surrogate of flow and only predicts percentage flow changes.
View Article and Find Full Text PDFRecent efforts have demonstrated the ability of computational models to predict fractional flow reserve from coronary artery imaging without the need for invasive instrumentation. However, these models include only larger coronary arteries as smaller side branches cannot be resolved and are therefore neglected. The goal of this study was to evaluate the impact of neglecting the flow to these side branches when computing angiography-derived fractional flow reserve (vFFR) and indices of volumetric coronary artery blood flow.
View Article and Find Full Text PDFThe aim of this position paper is to provide a brief overview of the current status of cardiovascular modelling and of the processes required and some of the challenges to be addressed to see wider exploitation in both personal health management and clinical practice. In most branches of engineering the concept of the digital twin, informed by extensive and continuous monitoring and coupled with robust data assimilation and simulation techniques, is gaining traction: the Gartner Group listed it as one of the top ten digital trends in 2018. The cardiovascular modelling community is starting to develop a much more systematic approach to the combination of physics, mathematics, control theory, artificial intelligence, machine learning, computer science and advanced engineering methodology, as well as working more closely with the clinical community to better understand and exploit physiological measurements, and indeed to develop jointly better measurement protocols informed by model-based understanding.
View Article and Find Full Text PDFJ Med Eng Technol
October 2018
Lumped-parameter models are widely used by cardiovascular researchers in the analysis of the circulatory dynamics. However, portability and model exchange have always been a problem, with different researchers implement the model differently. To improve the situation, in this study, a group of lumped-parameter cardiovascular system models with different levels of complexity have been implemented using the CellML mark-up language.
View Article and Find Full Text PDFBackground: Non-invasive estimation of the pressure gradient in aortic coarctation has much clinical importance in assisting the diagnosis and treatment of the disease. Previous researchers applied computational fluid dynamics for the prediction of the pressure gradient in aortic coarctation. The accuracy of the prediction was satisfactory but the procedure was time-consuming and resource-demanding.
View Article and Find Full Text PDFAims: Fractional flow reserve (FFR) represents the percentage reduction in coronary flow relative to a hypothetically normal artery; however, percutaneous coronary intervention (PCI) seldom achieves physiological normality (FFR 1.00), particularly in the context of diffuse disease. In this study we describe a method for calculating the vessel-specific maximal achievable FFR (FFRmax) providing a personalised assessment of what PCI can achieve.
View Article and Find Full Text PDFComputational modeling has been used routinely in the pre-clinical development of medical devices such as coronary artery stents. The ability to simulate and predict physiological and structural parameters such as flow disturbance, wall shear-stress, and mechanical strain patterns is beneficial to stent manufacturers. These methods are now emerging as useful clinical tools, used by physicians in the assessment and management of patients.
View Article and Find Full Text PDFObjectives: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting.
Background: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling.
Aims: Fractional flow reserve (FFR), the reference standard for guiding coronary revascularisation, is most commonly acquired during intravenous adenosine infusion. Results may be sensitive to system- and operator-dependent variability in how pressure data are analysed and interpreted. To quantify FFR objectively, we developed a computational protocol to process the recorded pressure signals in a consistent manner.
View Article and Find Full Text PDFBackground: This study combined themes in cardiovascular modelling, clinical cardiology and e-learning to create an on-line environment that would assist undergraduate medical students in understanding key physiological and pathophysiological processes in the cardiovascular system.
Methods: An interactive on-line environment was developed incorporating a lumped-parameter mathematical model of the human cardiovascular system. The model outputs were used to characterise the progression of key disease processes and allowed students to classify disease severity with the aim of improving their understanding of abnormal physiology in a clinical context.
Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis.
View Article and Find Full Text PDF