Publications by authors named "Lavoine L"

We propose and demonstrate the appearance of an effective attractive three-body interaction in coherently driven two-component Bose-Einstein condensates. It originates from the spinor degree of freedom that is affected by a two-body mean-field shift of the driven transition frequency. Importantly, its strength can be controlled with the Rabi-coupling strength and it does not come with additional losses.

View Article and Find Full Text PDF

We theoretically calculate and experimentally measure the beyond-mean-field (BMF) equation of state in a coherently coupled two-component Bose-Einstein condensate (BEC) in the regime where averaging of the interspecies and intraspecies coupling constants over the hyperfine composition of the single-particle dressed state predicts the exact cancellation of the two-body interaction. We show that with increasing the Rabi-coupling frequency Ω, the BMF energy density crosses over from the nonanalytic Lee-Huang-Yang scaling ∝n^{5/2} to an expansion in integer powers of density, where, in addition to a two-body BMF term ∝n^{2}sqrt[Ω], there emerges a repulsive three-body contribution ∝n^{3}/sqrt[Ω]. We experimentally evidence these two contributions, thanks to their different scaling with Ω, in the expansion of a Rabi-coupled two-component ^{39}K condensate in a waveguide.

View Article and Find Full Text PDF