Glioblastoma is refractory to therapy and presents a significant oncological challenge. Promising immunotherapies have not shown the promise observed in other aggressive cancers. The reasons for this include the highly immuno-suppressive tumour microenvironment controlled by the glioblastoma cells and heterogeneous phenotype of the glioblastoma cells.
View Article and Find Full Text PDFGlioblastoma is considered the most aggressive and lethal form of brain cancer. Glioblastoma tumours are complex, comprising a spectrum of oncogenically transformed cells displaying distinct phenotypes. These can be generated in culture and are called differentiated-glioblastoma cells and glioblastoma stem cells.
View Article and Find Full Text PDFGlioblastoma is a highly aggressive brain malignancy commonly refractory to classical and novel chemo-, radio- and immunotherapies, with median survival times of ~15 months following diagnosis. Poor immunological responses exemplified by the downregulation of T-cell activity, and upregulation of immunosuppressive cells within the tumor microenvironment have limited the effectiveness of immunotherapy in glioblastoma to date. Here we show that glioblastoma cells express a large repertoire of inhibitory checkpoint ligands known to control effector T cell responses.
View Article and Find Full Text PDFWe have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.
View Article and Find Full Text PDFNeuroinflammatory disorders such as Alzheimer's and Parkinson's diseases are characterised by chronic inflammation and loss of vascular integrity. Bradykinin 1 receptor (B1R) activation has been implicated in many neuroinflammatory diseases, but the contribution of B1R to inflammation and vascular breakdown is yet to be determined. As a result, the present study evaluated the effect of B1R stimulation using Des-Arg-9-BK on the cytokine profile and junctional properties of human cerebral microvascular endothelial cells (hCMVECs).
View Article and Find Full Text PDFIn this paper, we demonstrate the application of electrical cell-substrate impedance sensing (ECIS) technology for measuring differences in the formation of a strong and durable endothelial barrier model. In addition, we highlight the capacity of ECIS technology to model the parameters of the physical barrier associated with (I) the paracellular space (referred to as R) and (II) the basal adhesion of the endothelial cells (α, alpha). Physiologically, both parameters are very important for the correct formation of endothelial barriers.
View Article and Find Full Text PDF