Polymer fibers with specific chemical and mechanical properties are key components of many biomaterials used for regenerative medicine and drug delivery. Here, we develop a bioinspired, low-energy process to produce mechanically tunable biopolymer fibers drawn from aqueous solutions. Hyaluronic acid (HA) forms dynamic cross-links with branched polyethylene glycol polymers end-functionalized with boronic acids of varied structure to produce extensible polymer networks.
View Article and Find Full Text PDFThe World Health Organization's Expanded Programme on Immunization has led to a dramatic rise in worldwide vaccination rates over the past 40years, yet 19.4 million infants remain underimmunized each year. Many of these infants have received at least one vaccine dose but may remain unprotected because they did not receive subsequent booster doses due to logistical challenges.
View Article and Find Full Text PDFThe covalent modification of therapeutic biomolecules has been broadly explored, leading to a number of clinically approved modified protein drugs. These modifications are typically intended to address challenges arising in biopharmaceutical practice by promoting improved stability and shelf life of therapeutic proteins in formulation, or modifying pharmacokinetics in the body. Toward these objectives, covalent modification with poly(ethylene glycol) (PEG) has been a common direction.
View Article and Find Full Text PDFSince its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy.
View Article and Find Full Text PDF