π-Electron magnetic compounds on surfaces have emerged as a powerful platform to interrogate spin interactions at the atomic scale, with great potential in spintronics and quantum technologies. A key challenge is organizing these compounds over large length scales, while elucidating their resulting magnetic properties. Herein, we offer a relevant contribution toward this objective, which consists of using on-surface synthesis coupled with coordination chemistry to promote the self-assembly of π-electron magnetic porphyrin species.
View Article and Find Full Text PDFKagome lattices have attracted much attention due the very interesting properties they can exhibit, both from the electronic and the magnetic points of view, although much of the experimental studies have been reported on 3D metals or 2D nanosheets. In the past few years, on-surface synthesis has allowed the fabrication of strictly monolayer 2D metal-organic networks, many of them containing transition metals. In this paper we report the fabrication and the study of the electronic and magnetic properties of a monolayer 2D metal-organic network where the nodes are lanthanide atoms forming a kagome lattice.
View Article and Find Full Text PDFThe synthesis of porphyrinoid-based low-dimensional polymers has recently attracted considerable interest in view of their intriguing electronic, optical, and catalytic properties. Here, this is introduced by the surface-assisted synthesis of two carbaporphyrinoid-based polymers of increasing dimensionality under ultrahigh-vacuum conditions. The structural and electronic characterization of the resulting polymers has been performed by scanning tunneling and non-contact atomic force microscopies, complemented by theoretical modeling.
View Article and Find Full Text PDFPlasmonic nanoantennas have attracted much attention lately, among other reasons because of the directionality of light emitted by fluorophores coupled to their localized surface plasmon resonances. Plasmonic picocavities, i.e.
View Article and Find Full Text PDFThe design of novel low-dimensional carbon materials is at the forefront of modern chemistry. Recently, on-surface covalent synthesis has emerged as a powerful strategy to synthesize previously precluded compounds and polymers. Here, we report a scanning probe microscopy study, complemented by theoretical calculations, on the sequential skeletal rearrangement of sumanene-based precursors into a coronene-based organometallic network by stepwise intra- and inter-molecular reactions on Au(111).
View Article and Find Full Text PDFAliphatics prevail in asteroids, comets, meteorites and other bodies in our solar system. They are also found in the interstellar and circumstellar media both in gas-phase and in dust grains. Among aliphatics, linear alkanes (n-CH) are known to survive in carbonaceous chondrites in hundreds to thousands of parts per billion, encompassing sequences from CH to n-CH.
View Article and Find Full Text PDFThe incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings.
View Article and Find Full Text PDFAntiferromagnetic spintronics is a rapidly emerging field with the potential to revolutionize the way information is stored and processed. One of the key challenges in this field is the development of novel 2D antiferromagnetic materials. In this paper, the first on-surface synthesis of a Co-directed metal-organic network is reported in which the Co atoms are strongly antiferromagnetically coupled, while featuring a perpendicular magnetic anisotropy.
View Article and Find Full Text PDFFullertubes, that is, fullerenes consisting of a carbon nanotube moiety capped by hemifullerene ends, are emerging carbon nanomaterials whose properties show both fullerene and carbon nanotube (CNT) traits. Albeit it may be expected that their electronic states show a certain resemblance to those of the extended nanotube, such a correlation has not yet been found or described. Here it shows a scanning tunneling microscopy (STM) and spectroscopy (STS) characterization of the adsorption, self-assembly, and electronic structure of 2D arrays of [5,5]-C fullertube molecules on two different noble metal surfaces, Ag(111) and Au(111).
View Article and Find Full Text PDFThe coordination of lanthanides atoms in two-dimensional surface-confined metal-organic networks is a promising path to achieve an ordered array of single atom magnets. These networks are highly versatile with plenty of combinations of molecular linkers and metallic atoms. Notably, with an appropriate choice of molecules and lanthanide atoms it should be feasible to tailor the orientation and intensity of the magnetic anisotropy.
View Article and Find Full Text PDFThe design of a well-ordered arrangement of atoms on a solid surface has long been sought due to the envisioned applications in many different fields. On-surface synthesis of metal-organic networks is one of the most promising fabrication techniques. Hierarchical growth, which involves coordinative schemes with weaker interactions, favours the formation of extended areas with the desired complex structure.
View Article and Find Full Text PDFThe design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (, , and ) featuring majority zigzag peripheries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
Nanocars are carbon-based single-molecules with a precise design that facilitates their atomic-scale control on a surface. The rational design of these molecules is important in atomic and molecular-scale manipulation to advance the development of molecular machines, as well as for a better understanding of self-assembly, diffusion and desorption processes. Here, we introduce the molecular design and construction of a collection of minimalistic nanocars.
View Article and Find Full Text PDFControlling the interaction between the excitonic states of a quantum emitter and the plasmonic modes of a nanocavity is key for the development of quantum information processing devices. In this Letter we demonstrate that the tunnel electroluminescence of electrically insulated C nanocrystals enclosed in the plasmonic nanocavity at the junction of a scanning tunneling microscope can be switched from a broad emission spectrum, revealing the plasmonic modes of the cavity, to a narrow band emission, displaying only the excitonic states of the C molecules by changing the bias voltage applied to the junction. Interestingly, excitonic emission dominates the spectra in the high-voltage region in which the simultaneously acquired inelastic rate is low, demonstrating that the excitons cannot be created by an inelastic tunnel process.
View Article and Find Full Text PDFThe design of antiferromagnetic nanomaterials preserving large orbital magnetic moments is important to protect their functionalities against magnetic perturbations. Here, we exploit an archetype HHOTP species for conductive metal-organic frameworks to design a Co-HOTP one-atom-thick metal-organic architecture on a Au(111) surface. Our multidisciplinary scanning probe microscopy, X-ray absorption spectroscopy, X-ray linear dichroism, and X-ray magnetic circular dichroism study, combined with density functional theory simulations, reveals the formation of a unique network design based on threefold Co coordination with deprotonated ligands, which displays a large orbital magnetic moment with an orbital to effective spin moment ratio of 0.
View Article and Find Full Text PDFThe synthesis of novel polymeric materials with porphyrinoid compounds as key components of the repeating units attracts widespread interest from several scientific fields in view of their extraordinary variety of functional properties with potential applications in a wide range of highly significant technologies. The vast majority of such polymers present a closed-shell ground state, and, only recently, as the result of improved synthetic strategies, the engineering of open-shell porphyrinoid polymers with spin delocalization along the conjugation length has been achieved. Here, we present a combined strategy toward the fabrication of one-dimensional porphyrinoid-based polymers homocoupled via surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituents on Au(111).
View Article and Find Full Text PDFOn-surface synthesis has recently emerged as a powerful strategy to design conjugated polymers previously precluded in conventional solution chemistry. Here, an N-containing pentacene-based precursor (tetraazapentacene) is ex-professo synthesized endowed with terminal dibromomethylene (:CBr ) groups to steer homocoupling via dehalogenation on metallic supports. Combined scanning probe microscopy investigations complemented by theoretical calculations reveal how the substrate selection drives different reaction mechanisms.
View Article and Find Full Text PDFThe design of lanthanide multinuclear networks is an emerging field of research due to the potential of such materials for nanomagnetism, spintronics, and quantum information. Therefore, controlling their electronic and magnetic properties is of paramount importance to tailor the envisioned functionalities. In this work, a multidisciplinary study is presented combining scanning tunneling microscopy, scanning tunneling spectroscopy, X-ray absorption spectroscopy, X-ray linear dichroism, X-ray magnetic circular dichroism, density functional theory, and multiplet calculations, about the supramolecular assembly, electronic and magnetic properties of periodic dinuclear 2D networks based on lanthanide-pyridyl interactions on Au(111).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2022
First-row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported.
View Article and Find Full Text PDFThe synthesis of nanographenes (NGs) with open-shell ground states have recently attained increasing attention in view of their interesting physicochemical properties and great prospects in manifold applications as suitable materials within the rising field of carbon-based magnetism. A potential route to induce magnetism in NGs is the introduction of structural defects, for instance non-benzenoid rings, in their honeycomb lattice. Here, we report the on-surface synthesis of three open-shell non-benzenoid NGs (, and ) on the Au(111) surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2021
The atomically precise control over the size, shape and structure of nanographenes (NGs) or the introduction of heteroatom dopants into their sp -carbon lattice confer them valuable electronic, optical and magnetic properties. Herein, we report on the design and synthesis of a hexabenzocoronene derivative embedded with graphitic nitrogen in its honeycomb lattice, achieved via on-surface assisted cyclodehydrogenation on the Au(111) surface. Combined scanning tunnelling microscopy/spectroscopy and non-contact atomic force microscopy investigations unveil the chemical and electronic structures of the obtained dicationic NG.
View Article and Find Full Text PDFAmong the plethora of polycyclic structures that have emerged in recent years, indenofluorenes comprise a unique class of compounds due to their potential in organic electronic systems such as OLEDs, OFETs, and OPVCs. However, the synthesis of fully conjugated indenofluorenes without bulky groups on the apical carbons under standard chemistry conditions is not easily accessible. In this regard, on-surface synthesis has appeared as a newly developing field of research, which exploits the use of well-defined solid surfaces as confinement templates to initiate and develop chemical reactions.
View Article and Find Full Text PDFThe accurate determination of electronic temperatures in metallic nanostructures is essential for many technological applications, like plasmon-enhanced catalysis or lithographic nanofabrication procedures. In this Letter, we demonstrate that the electronic temperature can be accurately measured by the shape of the tunnel electroluminescence emission edge in tunnel plasmonic nanocavities, which follows a universal thermal distribution with the bias voltage as the chemical potential of the photon population. A significant deviation between electronic and lattice temperatures is found below 30 K for tunnel currents larger than 15 nA.
View Article and Find Full Text PDFChem Commun (Camb)
February 2021
The interest in exploiting the unique properties of lanthanides has led to the recent design of two-dimensional coordination networks incorporating f-block elements on metallic surfaces. In order to take this field to the next step of progression, it is necessary to electronically decouple these two-dimensional architectures from the metallic surface underneath. As a first step in this direction, we report the formation of dysprosium-directed metal-organic networks employing three-fold ligands as molecular linkers equipped with terminal carbonitrile functional groups on weakly interacting substrates such as Au(111) and graphene/Ir(111).
View Article and Find Full Text PDF