Publications by authors named "Lauver A"

Perivascular adipose tissue (PVAT) regulates vascular function due to its capacity to synthesize vasoactive products and its mechanical properties. PVATs most abundant cells are adipocytes, and their populations are maintained by the maturation of adipocyte progenitor cells (APC), which may play a pivotal role in the pathogenesis of cardiovascular diseases. However, the distribution of APC within PVAT depots, their potential variation in spatial location, and the influence of sex and age on their abundance remain unknown.

View Article and Find Full Text PDF

Background Recommendations on optimal agents to manage blood pressure (BP) in patients with an intracranial hemorrhage (ICH) are lacking. A case series suggests that hydralazine can cause intracranial pressure (ICP) elevation in an ICH. The purpose of this study was to compare the effects of intravenous (IV) hydralazine to IV labetalol on ICP in patients with ICH.

View Article and Find Full Text PDF

Introduction: Tunica media extracellular matrix (ECM) remodeling is well understood to occur in response to elevated blood pressure, unlike the remodeling of other tunicas. We hypothesize that perivascular adipose tissue (PVAT) is responsive to hypertension and remodels as a protective measure.

Methods: The adventitia and PVAT of the thoracic aorta were used in measuring ECM genes from 5 pairs of Dahl SS male rats on 8 or 24 weeks of feeding from weaning on a control (10% Kcal fat) or high-fat (HF; 60%) diet.

View Article and Find Full Text PDF

Pluripotent stem cell-derived organoids can recapitulate significant features of organ development in vitro. We hypothesized that creating human heart organoids by mimicking aspects of in utero gestation (e.g.

View Article and Find Full Text PDF

Healthcare professionals are increasingly concerned about vaccine hesitancy, an exigency the World Health Organization named one of the ten threats to global health, even before the COVID-19 pandemic. Traditional rhetorical strategies (e.g.

View Article and Find Full Text PDF

BACKGROUND Clostridial myonecrosis, also known as gas gangrene, is a highly lethal necrotizing soft tissue infection. While commonly associated with trauma, clostridial myonecrosis may be the result of parenteral injection of medications. Epinephrine is the most commonly reported medication leading to gas gangrene.

View Article and Find Full Text PDF

A vital aspect of the drug discovery and development process is the identification and filtering of drugs with high risk of dangerous adverse events. Torsade de Pointes (TdP) is one example of an adverse event that requires thorough in vitro and in vivo drug screening. This is because TdP, a tachycardic ventricular arrhythmia, can develop into fatal cardiac events if left unresolved and has been missed during drug development with profound consequences.

View Article and Find Full Text PDF

Dipeptidyl peptidase-like proteins (DPLs) and Kv-channel-interacting proteins (KChIPs) join Kv4 pore-forming subunits to form multi-protein complexes that underlie subthreshold A-type currents (I(SA)) in neuronal somatodendritic compartments. Here, we characterize the functional effects and brain distributions of N-terminal variants belonging to the DPL dipeptidyl peptidase 10 (DPP10). In the Kv4.

View Article and Find Full Text PDF

The somatodendritic A-current, I(SA), in hippocampal CA1 pyramidal neurons regulates the processing of synaptic inputs and the amplitude of back propagating action potentials into the dendritic tree, as well as the action potential firing properties at the soma. In this study, we have used RNA interference and over-expression to show that expression of the Kv4.2 gene specifically regulates the I(SA) component of A-current in these neurons.

View Article and Find Full Text PDF

Platelet accretion into arterial thrombus in stenotic arterial vessels involves shear-induced platelet activation and adhesion. The Cone and Plate(let) Analyzer (CPA) is designed to simulate such conditions in vitro under a rotating high shear rate in whole blood. In the present study, we evaluated various experimental conditions (including aspirin, temperature, and calcium concentration) and investigated the effects of small molecules along with peptide glycoprotein IIb/IIIa antagonists on platelet adhesion using the CPA system.

View Article and Find Full Text PDF

The presence of dominant transforming genes in human tumor cell lines has been investigated. High molecular weight DNAs isolated from cell lines established from carcinomas and sarcomas of various organs as well as from a glioblastoma and two melanomas were utilized to transfect NIH/3T3 mouse fibroblasts. The DNAs of T24 and A2182, two cell lines derived from a bladder and a lung carcinoma, respectively, and of HT-1080, a cell line established from a fibrosarcoma, were able to transform recipient NIH/3T3 cells.

View Article and Find Full Text PDF

DNAs isolated from a variety of human tumor cell lines as well as from naturally occurring human carcinomas and sarcomas were shown to induce morphologic transformation upon transfection into NIH/3T3 cells. All tested transformants contained human DNA sequences, some of which specifically cosegregated with the malignant phenotype in additional cycles of transfection. Southern blot analysis of second cycle transformants derived from T24 human bladder carcinoma cells showed the presence of a single 15 kbp EcoRI fragment of human DNA.

View Article and Find Full Text PDF

The primary translational product of the McDonough (SM) strain of feline sarcoma virus (FeSV) is a 180,000-dalton molecule, SM P180, that contains the p15-p12-p30 region of the FeLV gag gene-coded precursor protein and a sarcoma virus-specific polypeptide. In addition, cells transformed by SM-FeSV express a 120,000-dalton molecule, SM P120, that is highly related to the non-helper virus domain of SM P180. Both SM-FeSV gene products were found to be intimately associated with the membrane fraction of SM-FeSV-transformed cells.

View Article and Find Full Text PDF

The McDonough (SM), Gardner-Arnstein (GA), and Snyder-Theilen (ST) strains of feline sarcoma virus (FeSV) code for high-molecular-weight polyproteins that contain varying amounts of the amino-terminal region of the FeLV gag gene-coded precursor protein and a polypeptide(s) of an as yet undetermined nature. The SM-FeSV primary translational product is a 180,000-dalton polyprotein which is immediately processed into a highly unstable 60,000-dalton molecule containing the p15-p12-p30 fragment of the FeLV gag gene-coded precursor protein and a 120,000-dalton FeSV-specific polypeptide. The GA- and ST-FeSV genomes code for polyproteins of 95,000 and 85,000 daltons, respectively, which in addition to the amino-terminal moiety (p15-12 and a portion of p30) of the FeLV gag gene-coded precursor protein also contain FeSV-specific polypeptides.

View Article and Find Full Text PDF