This study presents the utilization of a novel, highly lipophilic nitric oxide (NO) donor molecule, S -nitroso-1-adamantanethiol (SNAT), for developing an NO-emitting polymer surface aimed at preventing thrombus formation and bacterial infection in extracorporeal circuits (ECCs). S -nitroso-1-adamantanethiol, a tertiary nitrosothiol-bearing adamantane species, was synthesized, characterized, and used to impregnate polyvinyl chloride (PVC) tubing for subsequent in vivo evaluation. The impregnation process with SNAT preserved the original mechanical strength of the PVC.
View Article and Find Full Text PDFBlood-contacting medical devices routinely fail from the cascading effects of biofouling toward infection and thrombosis. Nitric oxide (NO) is an integral part of endothelial homeostasis, maintaining platelet quiescence and facilitating oxidative/nitrosative stress against pathogens. Recently, it is shown that the surface evolution of NO can mediate cell-surface interactions.
View Article and Find Full Text PDFBackground: Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications.
View Article and Find Full Text PDFBackground: Clinical translation of the extracorporeal artificial placenta (AP) is impeded by the high risk for intracranial hemorrhage in extremely premature newborns. The Nitric Oxide Surface Anticoagulation (NOSA) system is a novel non-thrombogenic extracorporeal circuit. This study aims to test the NOSA system in the AP without systemic anticoagulation.
View Article and Find Full Text PDFBackground: Artificial lungs have the potential to serve as a bridge to transplantation or recovery for children with end-stage lung disease dependent on extracorporeal life support, but such devices currently require systemic anticoagulation. We describe our experience using the novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system-an NO-releasing circuit with NO in the sweep gas-with the Pediatric MLung-a low-resistance, pumpless artificial lung.
Methods: NO flux testing: MLungs (n = 4) were tested using veno-venous extracorporeal life support in a sheep under anesthesia with blood flow set to 0.
Microfluidic artificial lungs (µALs) have the potential to improve the treatment and quality of life for patients with acute or chronic lung injury. In order to realize the full potential of this technology (including as a destination therapy), the biocompatibility of these devices needs to be improved to produce long-lasting devices that are safe for patient use with minimal or no systemic anticoagulation. Many studies exist which probe coagulation and thrombosis on polydimethyl siloxane (PDMS) surfaces, and many strategies have been explored to improve surface biocompatibility.
View Article and Find Full Text PDFConstant therapeutic gas phase nitric oxide (NO) delivery is achieved from S-nitrosothiol (RSNO) type NO donor doped silicone rubber films using feedback-controlled photolysis. For photo-release of the NO gas, the intensity of the LED light source is controlled via a PID (proportional-integral-derivative) controller implemented on a microcontroller. The NO concentration within the emitted gas phase is monitored continuously with a commercial amperometric NO gas sensor.
View Article and Find Full Text PDFImplantable medical devices are an integral part of primary/critical care. However, these devices carry a high risk for blood clots, caused by platelet aggregation on a foreign body surface. This study focuses on the development of a simplified approach to create nitric oxide (NO) releasing intravascular electrochemical oxygen (O) sensors with increased biocompatibility and analytical accuracy.
View Article and Find Full Text PDFCardiopulmonary bypass causes a systemic inflammatory response reaction that may contribute to postoperative complications. One cause relates to the air/blood interface from the extracorporeal circuit. The modulatory effects of blending nitric oxide (NO) gas into the ventilation/sweep gas of the membrane lung was studied in a porcine model of air-induced inflammation in which NO gas was added and compared with controls with or without an air/blood interface.
View Article and Find Full Text PDFBackground: Cytarabine (cytosine arabinoside, ara-C) is a chemotherapeutical agent used in the treatment of pediatric acute lymphoblastic leukemia (ALL). Adverse drug reactions, such as interpatient variability in sensitivity to ara-C, are considerable and may cause difficulties during chemotherapy. Single nucleotide polymorphisms (SNPs) can play a significant role in modifying nucleoside-drug pharmacokinetics and pharmacodynamics and thus the development of adverse effects.
View Article and Find Full Text PDFCYP3A4 has an important role in the metabolisms of many drugs used in acute lymphoblastic leukemia (ALL) therapy; still, there are practically no publications about the role of CYP3A4 polymorphisms in ALL pharmacogenomics. We genotyped eight common single-nucleotide polymorphisms (SNPs) in the CYP3A4 and CYP3A5 genes in 511 children with ALL and investigated whether they influenced the survival of the patients. We involved additional 127 SNPs in 34 candidate genes and searched for interactions with respect to the survival rates.
View Article and Find Full Text PDFIn this study we investigated whether polymorphisms in the folate pathway influenced the risk of childhood acute lymphoblastic leukemia (ALL) or the survival rate of the patients. For this we selected and genotyped 67 SNPs in 15 genes in the folate pathway in 543 children with ALL and 529 controls. The results were evaluated by gender adjusted logistic regression and by the Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) methods.
View Article and Find Full Text PDFMastocytosis is a rare disease with reported high interleukin-6 (IL6) levels influencing disease severity. The present study investigated polymorphisms within the genes that encode IL6 and its receptor (IL6R) in relation to mastocytosis development in a case-control design. Analysis of the IL6R Asp358Ala polymorphism showed that carriers of the AA genotype had a 2·5-fold lower risk for mastocytosis than those with the AC or CC genotypes.
View Article and Find Full Text PDFBackground: We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population.
Methods: The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls.
J Cancer Res Clin Oncol
October 2012
Purpose: High-dose methotrexate (HD-MTX) with leucovorin rescue is widely used to treat osteosarcoma. Our objectives were to assess correlations between pharmacokinetic parameters and the outcome of osteosarcoma and to analyze the relation between HD-MTX exposure and toxicity.
Methods: Pharmacokinetic data of 105 patients with osteosarcoma treated with 989 HD-MTX courses were evaluated.
Anthracyclines are potent cytostatic drugs, the correct dosage being critical to avoid possible cardiac side effects. ABCC1 [ATP-binding cassette, sub-family C, member 1; also denoted as MRP1 (multidrug resistance-associated protein 1)] is expressed in the heart and takes part in the detoxification and protection of cells from the toxic effects of xenobiotics, including anthracyclines. Our objective was to search for associations between LV (left ventricular) function and single-nucleotide polymorphisms of the ABCC1 gene in children receiving anthracycline chemotherapy.
View Article and Find Full Text PDF