PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways.
View Article and Find Full Text PDFMicrobiol Resour Announc
March 2024
In this work, we report the discovery and characterization of Garey24, a bacteriophage that forms medium-size plaques with halo rings isolated from a soil sample in Funes, Argentina. Its 41,522 bp circularly permuted genome contains 63 putative protein-coding genes. Based on gene content similarity, Garey24 was assigned to subcluster EA1.
View Article and Find Full Text PDFMycobacterial cell elongation occurs at the cell poles; however, it is not clear how cell wall insertion is restricted to the pole or how it is organized. Wag31 is a pole-localized cytoplasmic protein that is essential for polar growth, but its molecular function has not been described. In this study we used alanine scanning mutagenesis to identify Wag31 residues involved in cell morphogenesis.
View Article and Find Full Text PDFCourse-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment - 1) Assessing Laboratory Work and Scientific Thinking; 2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; 3) Appraising Forms of Scientific Communication; and 4) Metacognition of Learning - along with a set of practices for each aim.
View Article and Find Full Text PDFQuorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of acyl-homoserine lactones (AHLs), which were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on the AHL synthase, AbaI, and on the photoreceptor BlsA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2021
3-methylglutaconic (3MGC) aciduria is associated with a growing number of discrete inborn errors of metabolism. Herein, an antibody-based approach to detection/quantitation of 3MGC acid has been pursued. When trans-3MGC acid conjugated keyhole limpet hemocyanin (KLH) was inoculated into rabbits a strong immune response was elicited.
View Article and Find Full Text PDFThe process of neuronal differentiation is associated with neurite elongation and membrane biogenesis, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. During neuroblast differentiation, the transcription of two genes involved in PtdCho biosynthesis are stimulated: Chka gene for choline kinase (CK) alpha isoform and Pcyt1a gene for CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. Here we show that CKα is essential for neuronal differentiation.
View Article and Find Full Text PDFCitrus canker is a disease caused by the phytopathogen Xanthomonas citri subsp. citri (Xcc), bacterium which is unable to survive out of the host for extended periods of time. Once established inside the plant, the pathogen must compete for resources and evade the defenses of the host cell.
View Article and Find Full Text PDFCurr Opin Microbiol
February 2018
The complex lipids present in the cell wall of Mycobacterium tuberculosis (Mtb) act as major effector molecules that actively interact with the host, modulating its metabolism and stimulating the immune response, which in turn affects the physiology of both, the host cell and the bacilli. Lipids from the host are also nutrient sources for the pathogen and define the fate of the infection by modulating lipid homeostasis. Although new technologies and experimental models of infection have greatly helped understanding the different aspects of the host-pathogen interactions at the lipid level, the impact of this interaction in the Mtb lipid regulation is still incipient, mainly because of the low background knowledge in this area of research.
View Article and Find Full Text PDFMycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that causes various host-specific diseases. During their life cycle, Salmonellae survive frequent exposures to a variety of environmental stresses, e.
View Article and Find Full Text PDFMycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest.
View Article and Find Full Text PDFAll organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein.
View Article and Find Full Text PDFThe first committed step of fatty acid and polyketides biosynthesis, the biotin-dependent carboxylation of an acyl-CoA, is catalyzed by acyl-CoA carboxylases (ACCases) such as acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC). ACC and PCC in Streptomyces coelicolor are homologue multisubunit complexes that can carboxylate different short chain acyl-CoAs. While ACC is able to carboxylate acetyl-, propionyl-, or butyryl-CoA with approximately the same specificity, PCC only recognizes propionyl- and butyryl-CoA as substrates.
View Article and Find Full Text PDFThe mammalian innate immune response provides a barrier against invading pathogens. Innate immune mechanisms are used by the host to respond to a range of bacterial pathogens in an acute and conserved fashion. Host cells express pattern recognition receptors that sense pathogen-associated molecular patterns.
View Article and Find Full Text PDFSifA is a Salmonella effector that is translocated into infected cells by the pathogenicity island 2-encoded type 3 secretion system. SifA is a critical virulence factor. Previous studies demonstrated that, upon translocation, SifA binds the pleckstrin homology motif of the eukaryotic host protein SKIP.
View Article and Find Full Text PDFPathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs.
View Article and Find Full Text PDFAcetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC) catalyze the carboxylation of acetyl- and propionyl-CoA to generate malonyl- and methylmalonyl-CoA, respectively. Understanding the substrate specificity of ACC and PCC will (1) help in the development of novel structure-based inhibitors that are potential therapeutics against obesity, cancer, and infectious disease and (2) facilitate bioengineering to provide novel extender units for polyketide biosynthesis. ACC and PCC in Streptomyces coelicolor are multisubunit complexes.
View Article and Find Full Text PDFTwo acyl-CoA carboxylases from Streptomyces coelicolor have been successfully reconstituted from their purified components. Both complexes shared the same biotinylated alpha subunit, AccA2. The beta and the epsilon subunits were specific from each of the complexes; thus, for the propionyl-CoA carboxylase complex the beta and epsilon components are PccB and PccE, whereas for the acetyl-CoA carboxylase complex the components are AccB and AccE.
View Article and Find Full Text PDF