Publications by authors named "Lausmaa J"

The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designing-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer.

View Article and Find Full Text PDF

In the present study, a model for simulations of removal torque experiments was developed using finite element method. The interfacial retention and fracturing of the surrounding material caused by the surface features during torque was analyzed. It was hypothesized that the progression of removal torque and the phases identified in the torque response plot represents sequential fractures at the interface.

View Article and Find Full Text PDF

Osseointegrated transfemoral amputation prostheses have proven successful as an alternative method to the conventional socket-type prostheses. The method improves prosthetic use and thus increases the demands imposed on the bone-implant system. The hypothesis of the present study was that the loads applied to the bone-anchored implant system of amputees would result in locations of high stress and strain transfer to the bone tissue and thus contribute to complications such as unfavourable bone remodeling and/or elevated inflammatory response and/or compromised sealing function at the tissue-abutment interface.

View Article and Find Full Text PDF
Article Synopsis
  • Over the last 20 years, many fossil microorganisms have been discovered in Triassic to Miocene amber, along with other microscopic inclusions that may resemble various unicellular organisms.
  • Researchers used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to analyze modern resin from the Araucariaceae family of conifers, which are known for producing amber, to understand these inclusions better.
  • The study found that these inclusions lack characteristics of actual microbial cells, leading to a new term, 'pseudoinclusions,' indicating that they are not true fossils of protists but rather plant-derived compounds mixed in with the resin.
View Article and Find Full Text PDF

Unlabelled: In orthopaedic surgery, cobalt chromium (CoCr) based alloys are used extensively for their high strength and wear properties, but with concerns over stress shielding and bone resorption due to the high stiffness of CoCr. The structural stiffness, principally related to the bulk and the elastic modulus of the material, may be lowered by appropriate design modifications, to reduce the stiffness mismatch between metal/alloy implants and the adjacent bone. Here, 3D printed CoCr and Ti6Al4V implants of similar macro-geometry and interconnected open-pore architecture prepared by electron beam melting (EBM) were evaluated following 26week implantation in adult sheep femora.

View Article and Find Full Text PDF

Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo.

View Article and Find Full Text PDF

Infection constitutes a major risk for implant failure, but the reasons why biomaterial sites are more vulnerable than normal tissue are not fully elucidated. In this study, a soft tissue infection model was developed, allowing the analysis of cellular and molecular responses in each of the sub-compartments of the implant-tissue interface (on the implant surface, in the surrounding exudate and in the tissue). Smooth and nanostructured titanium disks with or without noble metal chemistry (silver, gold, palladium), and sham sites, were inoculated with Staphylococcus epidermidis and analysed with respect to number of viable bacteria, number, viability and gene expression of host cells, and using different morphological techniques after 4 h, 24 h and 72 h.

View Article and Find Full Text PDF

Objectives: The aim of this study was to evaluate the bone tissue response to fiber-reinforced composite (FRC) in comparison with titanium (Ti) implants after 12 weeks of implantation in cancellous bone using histomorphometric and ultrastructural analysis.

Materials And Methods: Thirty grit-blasted cylindrical FRC implants with BisGMA-TEGDMA polymer matrix were fabricated and divided into three groups: (1) 60s light-cured FRC (FRC-L group), (2) 24h polymerized FRC (FRC group), and (3) bioactive glass FRC (FRC-BAG group). Titanium implants were used as a control group.

View Article and Find Full Text PDF

Background: Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices.

Methods: In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, and 200 nm) to influence the morphology, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs).

Results: We found that the proliferation and osteogenic differentiation of hMSCs was influenced by the size of the underlying structures, suggesting that size variations in topographic features at the nanoscale level, independently of chemistry, can be exploited to control hMSC behavior in a size-dependent fashion.

View Article and Find Full Text PDF

Osseointegration is a prerequisite for achieving a stable long-term fixation and load-bearing capacity of bone anchored implants. Removal torque measurements are often used experimentally to evaluate the fixation of osseointegrated screw-shaped implants. However, a detailed understanding of the way different factors influence the result of removal torque measurements is lacking.

View Article and Find Full Text PDF

The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces.

View Article and Find Full Text PDF

In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide.

View Article and Find Full Text PDF

Background: Smoking, along with many respiratory diseases, has been shown to induce airway inflammation and alter the composition of the respiratory tract lining fluid (RTLF). We have previously shown that the phospholipid and protein composition of particles in exhaled air (PEx) reflects that of RTLF. In this study, we hypothesized that the composition of PEx differs between smokers and non-smokers, reflecting inflammation in the airways.

View Article and Find Full Text PDF

Unlabelled: Nanometer scale surface features on implants and prostheses can potentially be used to enhance osseointegration and may also add further functionalities, such as infection resistance, to the implant. In this study, a nanostructured noble metal coating consisting of palladium, gold and silver, never previously used in bone applications, was applied to machined titanium screws to evaluate osseointegration after 6 and 12 weeks in rabbit tibiae and femurs. Infection resistance was confirmed by in vitro adhesion test.

View Article and Find Full Text PDF

Patients with Graves' disease can be medically prepared before surgery in different ways, which may have various effects on iodine stores. Thyroid specimens were collected at surgery from two patients pretreated with propylthiouracil (PTU) and stable iodine, respectively. A quantitative analysis of iodine content was performed using X-ray fluorescence (XRF) in frozen tissue and a qualitative analysis of aldehyde-fixed material with Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS).

View Article and Find Full Text PDF

The dissolution and release of active ions from ion-doped apatites is currently gaining interest due to indications of a beneficial biologic response. The release of ions from apatite coatings is important because it influences the biological effect of these types of materials. In this study the ion release from three different ion-doped apatite coatings (iHA coatings), SrCaP, SiHA and FHA, has been studied.

View Article and Find Full Text PDF

Objectives: The aim of this study was to investigate the correlation between coating thickness and the crystal structure of physical-vapour-deposited (PVD) titanium dioxide coatings, and to evaluate their in vivo biocompatibility.

Materials And Methods: The PVD TiO 2 coatings of different thickness were deposited on machined titanium grade 2 screw-shaped implants. Non-coated titanium implants were used as controls.

View Article and Find Full Text PDF

Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory.

View Article and Find Full Text PDF

The aim of this study was to evaluate the bone tissue response to strontium- and silicon-substituted apatite (Sr-HA and Si-HA) modified titanium (Ti) implants. Sr-HA, Si-HA and HA were grown on thermally oxidized Ti implants by a biomimetic process. Oxidized implants were used as controls.

View Article and Find Full Text PDF

An implantable model system was developed to investigate the effects of nanoscale surface properties on the osseointegration of titanium implants in rat tibia. Topographical nanostructures with a well-defined shape (semispherical protrusions) and variable size (60 nm, 120 nm and 220 nm) were produced by colloidal lithography on the machined implants. Furthermore, the implants were sputter-coated with titanium to ensure a uniform surface chemical composition.

View Article and Find Full Text PDF

Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized implants with tailored mechanical properties and high potential in the clinical practice. In order to augment the interaction with the biological tissue, stem cells have recently been combined with metallic scaffolds for skeletal engineering applications.

View Article and Find Full Text PDF

The immune complement (IC) is a cell-free protein cascade system, and the first part of the innate immune system to recognize foreign objects that enter the body. Elevated activation of the system from, for example, biomaterials or medical devices can result in both local and systemic adverse effects and eventually loss of function or rejection of the biomaterial. Here, the researchers have studied the effect of surface nanotopography on the activation of the IC system.

View Article and Find Full Text PDF

Biomolecules and surfactants are believed to be the key factors for reconstruction of tooth enamel and preparation of fluoride hydroxyapatite coating with enamel-like structure on dental implants. We have developed an alternative surfactant-free biomimetic method to stimulate growth of fluoride substituted hydroxyapatite coatings with highly packed and aligned structure on metallic substrates. Oxidized titanium plates were chosen as the substrates.

View Article and Find Full Text PDF

The monocyte/macrophage system plays a central role in host defense, wound healing and immune regulation at biomaterial surfaces. Monocytes can be classically and alternatively activated, and can be stimulated differently in response to variations in biomaterial surface properties. In this study, human monocytes, cultured on polystyrene surfaces (Ps), were activated either classically, by lipopolysaccharide (LPS), or alternatively, by interleukin-4 (IL-4).

View Article and Find Full Text PDF

Particles in exhaled air (PEx) may reflect the composition of respiratory tract lining fluid (RTLF); thus, there is a need to assess their potential as sources of biomarkers for respiratory diseases. In the present study, we compared PEx from patients with asthma and controls using time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and multivariate analysis. Particles were collected using an instrument developed in-house.

View Article and Find Full Text PDF