During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.
View Article and Find Full Text PDFHere, we report the near full-length genome sequence of a isolate obtained from a naturally infected cow () in the state of Chiapas, Mexico. This sequence will support future efforts to improve our understanding of the evolutionary dynamics of this pathogen in endemic regions of Mexico.
View Article and Find Full Text PDFFor the first time, we describe phylogenomic signatures of an epidemic lineage of vesicular stomatitis Indiana virus (VSIV). We applied multiple evolutionary analyses to a dataset of 87 full-length genome sequences representing the circulation of an epidemic VSIV lineage in the US between 2019 and 2020. Based on phylogenetic analyses, we predicted the ancestral relationship of this lineage with a specific group of isolates circulating in the endemic zone of Chiapas, Mexico.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the causative agent of an often lethal disease in domestic pigs, African swine fever (ASF). ASF is currently a pandemic disease challenging pig production in Eurasia. While the ASFV genome encodes for over 160 proteins, the function of most of them are still not characterized.
View Article and Find Full Text PDFVesicular stomatitis (VS) is a vector-borne livestock disease caused by the vesicular stomatitis New Jersey virus (VSNJV). This study presents the first application of an SEIR-SEI compartmental model to analyze VSNJV transmission dynamics. Focusing on the 2014-2015 outbreak in the United States, the model integrates vertebrate hosts and insect vector demographics while accounting for heterogeneous competency within the populations and observation bias in documented disease cases.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle.
View Article and Find Full Text PDFPathogens
April 2024
We have previously reported that the recombinant African Swine Fever (ASF) vaccine candidate ASFV-G-Δ9GL/ΔUK efficiently induces protection in domestic pigs challenged with the virulent strain Georgia 2010 (ASFV-G). As reported, ASFV-G-Δ9GL/ΔUK induces protection, while intramuscularly (IM), administered at doses of 10 HAD or higher, prevents ASF clinical disease in animals infected with the homologous ASFV g strain. Like other recombinant vaccine candidates obtained from ASFV field isolates, ASFV-G-Δ9GL/ΔUK stocks need to be produced in primary cultures of swine macrophages, which constitutes an important limitation in the production of large virus stocks at the industrial level.
View Article and Find Full Text PDFViruses
February 2024
The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes.
View Article and Find Full Text PDFSeveral questions regarding the evolution of SARS-CoV-2 remain poorly elucidated. One of these questions is the possible evolutionary impact of SARS-CoV-2 after the infection in domestic animals. In this study, we aimed to evaluate the potential role of cats as generators of relevant SARS-CoV-2 lineages during the pandemic.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus, which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently affecting pork production in a large geographical region, including Eurasia and the Caribbean. ASFV has a large genome, which harbors more than 160 genes, but most of these genes' functions have not been experimentally characterized.
View Article and Find Full Text PDFViruses
October 2023
ASFV vaccine candidate ASFV-G-ΔI177L has been shown to be highly efficacious in inducing protection against challenges with the parental virus, the Georgia 2010 isolate, as well as against field strains isolated from Vietnam. ASFV-G-ΔI177L has been shown to produce protection even when used at low doses (10 HAD) and shows no residual virulence even when administered at high doses (10 HAD) or evaluated for a relatively long period of time (6 months). ASFV-G-ΔI177L stocks can only be massively produced in primary cell macrophages.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a highly contagious disease that affects wild and domestic swine. Currently, the disease is present as a pandemic affecting pork production in Eurasia and the Caribbean region. The etiological agent of ASF is a large, highly complex structural virus (ASFV) harboring a double-stranded genome encoding for more than 160 proteins whose functions, in most cases, have not been experimentally characterized.
View Article and Find Full Text PDFAfrican swine fever (ASF) is an important disease in swine currently producing a pandemic affecting pig production worldwide. Except in Vietnam, where two vaccines were recently approved for controlled use in the field, no vaccine is commercially available for disease control. Up to now, the most effective vaccines developed are based on the use of live-attenuated viruses.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of an economically important disease of swine currently affecting large areas of Africa, Eurasia and the Caribbean. ASFV has a complex structure harboring a large dsDNA genome which encodes for more than 160 proteins. One of the proteins, E66L, has recently been involved in arresting gene transcription in the infected host cell.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and structurally complex virus with a large genome harboring more than 150 genes. ASFV gene has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for efficient virus replication.
View Article and Find Full Text PDFThe Mexican lineage H7N3 highly pathogenic avian influenza virus (HPAIV) has persisted in Mexican poultry since its first isolation in 2012. To date, the detection of this virus has gradually expanded from the initial one state to 18 states in Mexico. Despite the HPAIV H7N3 outbreak occurring yearly, the transmission pathways have never been studied, disallowing the establishment of effective control measures.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the etiological agent of a swine pandemic affecting a large geographical area extending from Central Europe to Asia. The viral disease was also recently identified in the Dominican Republic and Haiti. ASFV is a structurally complex virus with a large dsDNA genome that encodes for more than 150 genes.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes.
View Article and Find Full Text PDF