In the context of multi-environment trials (MET), genomic prediction is proposed as a tool that allows the prediction of the phenotype of single cross hybrids that were not tested in field trials. This approach saves time and costs compared to traditional breeding methods. Thus, this study aimed to evaluate the genomic prediction of single cross maize hybrids not tested in MET, grain yield and female flowering time.
View Article and Find Full Text PDFMaximizing soil exploration through modifications of the root system is a strategy for plants to overcome phosphorus (P) deficiency. Genome-wide association with 561 tropical maize inbred lines from Embrapa and DTMA panels was undertaken for root morphology and P acquisition traits under low- and high-P concentrations, with 353,540 SNPs. P supply modified root morphology traits, biomass and P content in the global maize panel, but root length and root surface area changed differentially in Embrapa and DTMA panels.
View Article and Find Full Text PDFWe propose using probability concepts from Bayesian models to leverage a more informed decision-making process toward cultivar recommendation in multi-environment trials. Statistical models that capture the phenotypic plasticity of a genotype across environments are crucial in plant breeding programs to potentially identify parents, generate offspring, and obtain highly productive genotypes for target environments. In this study, our aim is to leverage concepts of Bayesian models and probability methods of stability analysis to untangle genotype-by-environment interaction (GEI).
View Article and Find Full Text PDFPlant growth promoting bacteria (PGPB) are an efficient and sustainable alternative to mitigate biotic and abiotic stresses in maize. This work aimed to sequence the genome of two Bacillus strains (B116 and B119) and to evaluate their plant growth-promoting (PGP) potential in vitro and their capacity to trigger specific responses in different maize genotypes. Analysis of the genomic sequences revealed the presence of genes related to PGP activities.
View Article and Find Full Text PDFGenomic selection has become a reality in plant breeding programs with the reduction in genotyping costs. Especially in maize breeding programs, it emerges as a promising tool for predicting hybrid performance. The dynamics of a commercial breeding program involve the evaluation of several traits simultaneously in a large set of target environments.
View Article and Find Full Text PDFThe objective of this study was to evaluate the effects of additive and non-additive genes on the efficiency of nitrogen (N) use and N responsiveness in inbred popcorn lines. The parents, hybrids and reciprocal crosses were evaluated in a 10x10 triple lattice design at two sites and two levels of N availability. To establish different N levels in the two experiments, fertilization was carried out at sowing, according to soil analysis reports.
View Article and Find Full Text PDFHeredity (Edinb)
July 2018
Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance.
View Article and Find Full Text PDFBackground: Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity.
View Article and Find Full Text PDF