Publications by authors named "Laurine Wedekind"

Background: In recent years, drug combinations have become increasingly popular to improve therapeutic outcomes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the risk of therapy resistance. However, as viability readouts of drug combination experiments are commonly performed as an endpoint where cells are lysed, longitudinal drug-interaction monitoring is currently only possible through combined endpoint assays.

View Article and Find Full Text PDF

Background: IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients.

Methods: We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures.

View Article and Find Full Text PDF

Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are small adaptor RNAs essential for mRNA translation. Alterations in the cellular tRNA population can directly affect mRNA decoding rates and translational efficiency during cancer development and progression. To evaluate changes in the composition of the tRNA pool, multiple sequencing approaches have been developed to overcome reverse transcription blocks caused by the stable structures of these molecules and their numerous base modifications.

View Article and Find Full Text PDF
Article Synopsis
  • Early detection of tumors in cancer patients leads to better treatment outcomes for less advanced cancers.
  • Tumor-educated platelets (TEPs) can be used for cancer detection via RNA-based blood tests, identifying 18 different cancer types with high accuracy.
  • The thromboSeq test showed 99% specificity in asymptomatic controls, accurately detecting two-thirds of cancers in advanced stages, and helped determine the origin of tumors in over 80% of cases.
View Article and Find Full Text PDF

Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by . We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.

View Article and Find Full Text PDF

Purpose: Diffuse intrinsic pontine glioma (DIPG) is an incurable type of pediatric brain cancer, which in the majority of cases is driven by mutations in genes encoding histone 3 (H3K27M). We here determined the preclinical therapeutic potential of combined AXL and HDAC inhibition in these tumors to reverse their mesenchymal, therapy-resistant, phenotype.

Experimental Design: We used public databases and patient-derived DIPG cells to identify putative drivers of the mesenchymal transition in these tumors.

View Article and Find Full Text PDF

Background: Atypical teratoid/rhabdoid tumors (AT/RT) are rare, but highly aggressive. These entities are of embryonal origin occurring in the central nervous system (CNS) of young children. Molecularly these tumors are driven by a single hallmark mutation, resulting in inactivation of SMARCB1 or SMARCA4.

View Article and Find Full Text PDF

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor, for which no effective therapeutic options currently exist. We here determined the potential of inhibition of the maternal embryonic leucine zipper kinase (MELK) for the treatment of DIPG. We evaluated the antitumor efficacy of the small-molecule MELK inhibitor OTSSP167 in patient-derived DIPG cultures, and identified the mechanism of action of MELK inhibition in DIPG by RNA sequencing of treated cells.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells make tiny bubbles called extracellular vesicles (EVs) that carry special molecules like RNA and proteins, which help them grow and resist treatment.
  • These EVs can connect to other cancer cells through a special "bridge" made by a protein called CCL18 and a receptor on the cell called CCR8.
  • By using a specific blocker for CCR8, scientists found a way to stop the helpful effects of EVs in brain tumors like glioblastoma, which could lead to new treatments.
View Article and Find Full Text PDF

Diffuse intrinsic pontine glioma (DIPG) is an aggressive type of brainstem cancer occurring mainly in children, for which there currently is no effective therapy. Current efforts to develop novel therapeutics for this tumor make use of primary cultures of DIPG cells, maintained either as adherent monolayer in serum containing medium, or as neurospheres in serum-free medium. In this manuscript, we demonstrate that the response of DIPG cells to targeted therapies in vitro is mainly determined by the culture conditions.

View Article and Find Full Text PDF

Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.

View Article and Find Full Text PDF

Surgery followed by chemoradiation and adjuvant chemotherapy is standard of care for patients with a glioblastoma (GBM). Due to its limited benefit, an upfront method to predict dismal outcome would prevent unnecessary toxic treatment. We searched for a predictive blood derived biomarker in a cohort of 55 patients with GBM.

View Article and Find Full Text PDF

Background: Glial brain tumors cause considerable mortality and morbidity in children and adults. Innovative targets for therapy are needed to improve survival and reduce long-term sequelae. The aim of this study was to find a candidate tumor-promoting protein, abundantly expressed in tumor cells but not in normal brain tissues, as a potential target for therapy.

View Article and Find Full Text PDF

Background: Glioblastomas exhibit a high level of chemotherapeutic resistance, including to the antimitotic agents vincristine and taxol. During the mitotic agent-induced arrest, glioblastoma cells are able to perform damage-control and self-repair to continue proliferation. Monopolar spindle 1 (MPS1/TTK) is a checkpoint kinase and a gatekeeper of the mitotic arrest.

View Article and Find Full Text PDF

Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the leading cause of cancer-related death in children. While it is clear that surgery (if possible), and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery.

View Article and Find Full Text PDF

Poly ADP-ribose polymerase (PARP) is a protein involved in single strand break repair. Recently, PARP inhibitors have shown considerable promise in the treatment of several cancers, both in monotherapy and in combination with cytotoxic agents. Synthetic lethal action of PARP inhibitors has been observed in tumors with mutations in double strand break repair pathways.

View Article and Find Full Text PDF

Purpose: Patients with a malignant glioma have a very poor prognosis. Cyclooxygenase-2 (COX-2) protein is regularly upregulated in gliomas and might be a potential therapeutic target. The effects of three selective COX-2 inhibitors were studied on three human glioma cell lines.

View Article and Find Full Text PDF

The COX-2 protein is frequently overexpressed in human malignant gliomas. This expression has been associated with their aggressive growth characteristics and poor prognosis for patients. Targeting the COX-2 pathway might improve glioma therapy.

View Article and Find Full Text PDF