A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious.
View Article and Find Full Text PDFPhospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos.
View Article and Find Full Text PDFDoubled haploid (DH) technology produces strictly homozygous fertile plant thanks to doubling the chromosomes of a haploid embryo/seedling. Haploid embryos are derived from either male or female germ line cells and hold only half the number of chromosomes found in somatic plant tissues, albeit in a recombinant form due to meiotic genetic shuffling. DH production allows to rapidly fix these recombinant haploid genomes in the form of perfectly homozygous plants (inbred lines), which are produced in two rather than six or more generations.
View Article and Find Full Text PDFMixing maternal and paternal genomes in embryos is not only responsible for the evolutionary success of sexual reproduction, but is also a cornerstone of plant breeding. However, once an interesting gene combination is obtained, further genetic mixing is problematic. To rapidly fix genetic information, doubled haploid plants can be produced: haploid embryos having solely the genetic information from one parent are allowed to develop, and chromosome doubling generates fully homozygous plants.
View Article and Find Full Text PDFThe analysis of 93 mutant alleles in 18 genes demonstrated that CRISPR-Cas9 is a robust tool for targeted mutagenesis in maize, permitting efficient generation of single and multiple knockouts. CRISPR-Cas9 technology is a simple and efficient tool for targeted mutagenesis of the genome. It has been implemented in many plant species, including crops such as maize.
View Article and Find Full Text PDFGilles et al. introduce the technique of haploid induction in plant breeding.
View Article and Find Full Text PDFGynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene () coding for a patatin-like phospholipase A. In all surveyed inducer lines, carries a 4-bp insertion leading to a predicted truncated protein.
View Article and Find Full Text PDF