β-Mannans are a heterogeneous group of polysaccharides with a common main chain of β-1,4-linked mannopyranoside residues. The cleavage of β-mannan chains is catalyzed by glycoside hydrolases called β-mannanases. In the CAZy database, β-mannanases are grouped by sequence similarity in families GH5, GH26, GH113 and GH134.
View Article and Find Full Text PDFNoctoc commune is a cyanobacterium living in various and extreme environments. Its ability to survive in desert, on ice or high altitude is explained by its exceptional metabolism and its capacity to resist to desiccation. N.
View Article and Find Full Text PDFChitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity.
View Article and Find Full Text PDF(CNCM I-5035) secretes an exopolysaccharide used as ingredient in cosmetic industry under the trademark Epidermist 4.0. It is appreciated for its ability to improve the physical and chemical barrier functions of the skin by notably increasing the keratinocyte differentiation and epidermal renewal.
View Article and Find Full Text PDF(CNCM I-4151) secretes an exopolysaccharide whose carbohydrate backbone is decorated with amino acids, likely conferring its properties that are appreciated in cosmetics. Here, the secreted polysaccharide of another strain of (CNCM I-5034) was characterized by chromatography and one- and two-dimensional NMR spectroscopy experiments. The structure was resolved and shows that the carbohydrate backbone is made of four residues: D-galactose (Gal), D-galacturonic acid (GalA) D-N-acetylglucosamine (GlcNAc) and D-glucuronic acid (GlcA), forming a tetrasaccharide repetition unit [→4)-β-d-GlcA-(1→3)-α-d-Gal-(1→3)-α-d-GalA-(1→3)-β-GlcNAc(1→].
View Article and Find Full Text PDFMany researchers have focused on high molecular weight (M) exopolysaccharides (EPS) as a source of potentially bioactive lower M derivatives. Therefore, it is of interest to find means for efficient and safe production of depolymerized-polymer derivatives. Exopolysaccharide-depolymerization products (EDP) varying in molecular weight were recovered from fermentative depolymerization of a native EPS produced by Pseudomonas stutzeri AS22.
View Article and Find Full Text PDFBacterial polysialyltransferases (PSTs) are processive enzymes involved in the synthesis of polysialic capsular polysaccharides. They can also synthesize polysialic acid in vitro from disialylated and trisialylated lactoside acceptors, which are the carbohydrate moieties of GD3 and GT3 gangliosides, respectively. Here, we engineered a non-pathogenic Escherichia coli strain that overexpresses recombinant sialyltransferases and sialic acid synthesis genes and can convert an exogenous lactoside into polysialyl lactosides.
View Article and Find Full Text PDFVibrio alginolyticus (CNCM I-4994) secretes an exopolysaccharide that can be used as an ingredient in cosmetic applications. The structure was resolved using chromatography and one- and two-dimensional NMR spectroscopy experiments. The results show that the carbohydrate backbone is made of two residues: d-galacturonic acid and N-acetyl-d-glucosamine (GlcNac), which together constitute a tetrasaccharide repetition unit: [→3)-α-d-GalA-(1→4)-α-d-GalA-(1→3)-α-d-GalA-(1→3)-β-GlcNAc(1→].
View Article and Find Full Text PDFMany bacteria possess a natural ability to synthesize and excrete exopolysaccharides which are widely varied in structure and function. These bacteria have the ability to solubilize inorganic phosphorus, which is important to promote growth and increase crop yields. The objective of this study is to select an adaptive strain to the constraints of erratic rainfall and large temperature variations and to determine the possible synergistic effects of its EPS and organic acid on tricalcium phosphate (TCP) solubilization.
View Article and Find Full Text PDFAlmond gum is a naturally occurring polymer produced by almond trees and shrubs. Its abundance, as well as its low cost production makes it a potential feedstock for use in food and pharmaceuticals. In this regard, almond gum oligosaccharides were enzymatically generated, purified and their monosaccharide composition assessed using gas chromatography-flame ionization detector.
View Article and Find Full Text PDFEnzymatic hydrolysis of almond gum generates low molecular weight oligosaccharides (OAG) with a yield of 33.5%. The generated oligosaccharides were purified and identified.
View Article and Find Full Text PDFPseudomonas stutzeri AS22, when grown on media containing starch and yeast extract and incubated at 30 °C and 200 rpm for 24h, was found to produce an acidic and high-molecular mass exopolysaccharide (EPS22). The EPS22 was purified and a yield of 1.3g/l was achieved.
View Article and Find Full Text PDF