Publications by authors named "Laurie N DiDonato"

The highly redundant pathways for extracellular electron transfer in Geobacter sulfurreducens must be simplified for this microorganism to serve as an effective chassis for applications such as the development of sensors and biocomputing. Five homologs of the periplasmic c-type cytochromes, PpcA-E, offer the possibility of multiple routes of electron transfer across the periplasm. The presence of a large number of outer membrane c-type cytochromes allows G.

View Article and Find Full Text PDF

Rel(Gsu) is the single Geobacter sulfurreducens homolog of RelA and SpoT proteins found in many organisms. These proteins are involved in the regulation of levels of guanosine 3', 5' bispyrophosphate, ppGpp, a molecule that signals slow growth and stress response under nutrient limitation in bacteria. We used information obtained from genome-wide expression profiling of the rel(Gsu) deletion mutant to identify putative regulatory sites involved in transcription networks modulated by Rel(Gsu) or ppGpp.

View Article and Find Full Text PDF

Background: In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated.

Results: The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca.

View Article and Find Full Text PDF

Geobacter species are key members of the microbial community in many subsurface environments in which dissimilatory metal reduction is an important process. The genome of Geobacter sulfurreducens contains a gene designated rel(Gsu), which encodes a RelA homolog predicted to catalyze both the synthesis and the degradation of guanosine 3',5'-bispyrophosphate (ppGpp), a regulatory molecule that signals slow growth in response to nutrient limitation in bacteria. To evaluate the physiological role of Rel(Gsu) in G.

View Article and Find Full Text PDF