Publications by authors named "Laurie M Erickson"

This study investigated the effects of a blocking anti-CD28 antibody (Anti-CD28-PV1-IgG3) in vitro and in vivo. Anti-CD28-PV1-IgG3, a hamster-mouse chimeric antibody against murine CD28, which does not provide CD28-positive signaling during TCR-driven T cell activation, enabled long-term survival of heart allografts across a complete mismatch of the MHC in rats. Among the T cell signaling proteins tested in the spleens from recipients, we found that recipients treated with anti-CD28-PV1-IgG3 exhibited suppression of alloantigen-initiated proximal TCR signaling events, including Lck, Zap70, Vav, and PI3K expression, and their PKC theta- and JNK-regulated expression/activation.

View Article and Find Full Text PDF

Allograft rejection is induced by graft tissue infiltration of alloreactive T cells that are activated mainly in secondary lymphoid organs of the host. DOCK2 plays a critical role in lymphocyte homing and immunological synapse formation by regulating the actin cytoskeleton, yet its role in the in vivo immune response remains unknown. We show here that DOCK2 deficiency enables long-term survival of cardiac allografts across a complete mismatch of the major histocompatibility complex molecules.

View Article and Find Full Text PDF

Background: Gene expression profiling has the potential to produce new insights into complex biologic systems. To test the value of complement DNA arrays in identifying pathways involved in organ transplant rejection, we examined the gene expression profiles of rat heart allografts from recipients treated with or without immunosuppression to prevent acute allograft rejection.

Methods: Heterotopic heart transplantation was performed using ACI or Lewis donors and Lewis recipients.

View Article and Find Full Text PDF

Genetic susceptibility to common conditions, such as essential hypertension and cardiac hypertrophy, is probably determined by various combinations of small quantitative changes in the expression of many genes. NPR1, coding for natriuretic peptide receptor A (NPRA), is a potential candidate, because NPRA mediates natriuretic, diuretic, and vasorelaxing actions of the nariuretic peptides, and because genetically determined quantitative changes in the expression of this gene affect blood pressure and heart weight in a dose-dependent manner in mice. To determine whether there are common quantitative variants in human NPR1, we have sequenced the entire human NPR1 gene and identified 10 polymorphic sites in its non-coding sequence by using DNA from 34 unrelated human individuals.

View Article and Find Full Text PDF

Background: Accumulated evidence from clinical transplantation has suggested that tacrolimus-based treatment can reverse ongoing allograft rejection in patients treated with cyclosporine (CsA)-based immunosuppression, even when a high dose of antirejection rescue therapy has failed. This evidence prompted us to investigate whether these two compounds, which share an in vitro mechanism, would differ in their abilities to regulate in situ cellular and molecular events during ongoing allograft rejection.

Methods: The equivalent effective doses of tacrolimus (3.

View Article and Find Full Text PDF