Publications by authors named "Laurie Lynch"

In asking the question of how the brain adapts to changes in the softness of manipulated objects, we studied dynamic communication between the primary sensory and motor cortical areas when nonhuman primates grasp and squeeze an elastically deformable manipulandum to attain an instructed force level. We focused on local field potentials recorded from S1 and M1 via intracortical microelectrode arrays. We computed nonparametric spectral Granger Causality to assess directed cortico-cortical interactions between these two areas.

View Article and Find Full Text PDF

Direct electronic communication with sensory areas of the neocortex is a challenging ambition for brain-computer interfaces. Here, we report the first successful neural decoding of English words with high intelligibility from intracortical spike-based neural population activity recorded from the secondary auditory cortex of macaques. We acquired 96-channel full-broadband population recordings using intracortical microelectrode arrays in the rostral and caudal parabelt regions of the superior temporal gyrus (STG).

View Article and Find Full Text PDF

Central venous catheters (CVCs) contribute disproportionately to bloodstream infection (BSI) and, by extension, to infection-related hospitalization, mortality, and health care costs in patients undergoing dialysis. Recent product advancements may reduce BSIs, but a sufficiently powered comparative-effectiveness study is needed to facilitate evidence-based patient care decisions. In a 13-month, prospective, cluster-randomized, open-label trial, we compared BSI rates in facilities using ClearGuard HD antimicrobial barrier caps (ClearGuard group) with those in facilities using Tego hemodialysis connectors plus Curos disinfecting caps (Tego+Curos group).

View Article and Find Full Text PDF

Background: The rate of bloodstream infections (BSIs) is disproportionately high in hemodialysis (HD) patients with central venous catheters (CVCs) versus those with permanent accesses, contributing to poorer outcomes, such as increased rates of death and hospitalizations.

Study Design: 12-month, prospective, cluster-randomized, multicenter, open-label trial.

Setting & Participants: 40 Fresenius Medical Care North America dialysis facilities were matched and paired by positive blood culture rate and number of patients with CVCs and then cluster-randomized with 20 in each study group.

View Article and Find Full Text PDF

Background: Few treatment options for alcohol use disorders (AUDs) exist and more are critically needed. Here, we assessed whether trace amine associated receptor 1 (TAAR1), a modulator of brain monoamine systems, is involved in the behavioral and reinforcement-related effects of ethanol and whether it could potentially serve as a therapeutic target.

Methods: Wild-type (WT) and TAAR1 knockout (KO) mice (75% C57J/BL6 and 25% 129S1/Sv background) were compared in tests of ethanol consumption (two-bottle choice [TBC]), motor impairment (loss of righting reflex, [LORR], locomotor activity) and ethanol clearance (blood ethanol level [BEL]).

View Article and Find Full Text PDF

The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that is functionally activated by amphetamine-based psychostimulants, including amphetamine, methamphetamine and MDMA. Previous studies have shown that in transgenic mice lacking the TAAR1 gene (TAAR1 knockout; KO) a single injection of amphetamine can produce enhanced behavioral responses compared to responses evoked in wild-type (WT) mice. Further, the psychostimulant effects of cocaine can be diminished by selective activation of TAAR1.

View Article and Find Full Text PDF

3-Iodothyronamine (T1AM) is a metabolite of thyroid hormone. It is an agonist at trace amine-associated receptor 1 (TAAR1), a recently identified receptor involved in monoaminergic regulation and a potential novel therapeutic target. Here, T1AM was studied using rhesus monkey TAAR1 and/or human dopamine transporter (DAT) co-transfected cells, and wild-type (WT) and TAAR1 knock-out (KO) mice.

View Article and Find Full Text PDF

The serotonin system is an important neurophysiological mediator of many behavioral phenotypes. Genetic variation within this system is thought to contribute not only to the natural range of behavioral differences, but also to neuropsychiatric pathologies. Cognitive flexibility, the ability to change patterns of response as reward context shifts, is an important trait that underlies many complex social interactions.

View Article and Find Full Text PDF

Human MDMA (R,S-3,4-methylenedioxymethamphetamine) users display selective cognitive deficits after acute MDMA exposure, frequently attributed to serotonin deficits. We postulated that MDMA will compromise executive function in primates and that an inhibitor of the serotonin transporter (SERT) and the norepinephrine transporter (NET) but not the dopamine (DAT) transporter, will prevent impairment. The potencies of DAT/NET, NET and SERT inhibitors to block transport of [(3)H]MDMA and [(3)H]monoamines were compared in vitro.

View Article and Find Full Text PDF

2-[(Diphenylmethyl) sulfinyl]acetamide (modafinil), prescribed principally to treat narcolepsy, is undergoing assessment for other neuropsychiatric disorders and medical conditions. The neurochemical substrates of modafinil are unresolved. We postulated that modafinil enhances wakefulness by modulating dopamine (DAT), norepinephrine (NET), or serotonin (SERT) transporter activities.

View Article and Find Full Text PDF