We introduce the hybrid functional HSEsol. It is based on PBEsol, a revised Perdew-Burke-Ernzerhof functional, designed to yield accurate equilibrium properties for solids and their surfaces. We present lattice constants, bulk moduli, atomization energies, heats of formation, and band gaps for extended systems, as well as atomization energies for the molecular G2-1 test set.
View Article and Find Full Text PDFWe show that the inclusion of second-order screened exchange to the random phase approximation allows for an accurate description of electronic correlation in atoms and solids clearly surpassing the random phase approximation, but not yet approaching chemical accuracy. From a fundamental point of view, the method is self-correlation free for one-electron systems. From a practical point of view, the approach yields correlation energies for atoms, as well as for the jellium electron gas within a few kcal/mol of exact values, atomization energies within typically 2-3 kcal/mol of experiment, and excellent lattice constants for ionic and covalently bonded solids (0.
View Article and Find Full Text PDF