Publications by authors named "Laurianne Paris"

Nosema ceranae is an intestinal parasite frequently found in Apis mellifera colonies. This parasite belongs to Microsporidia, a group of obligate intracellular parasites known to be strongly dependent on their host for energy and resources. Previous studies have shown that N.

View Article and Find Full Text PDF

Microbacterium sp. C448, isolated from a soil regularly exposed to sulfamethazine (SMZ), can use various sulphonamide antibiotics as the sole carbon source for growth. The basis for the regulation of genes encoding the sulphonamide metabolism pathway, the dihydropteroate synthase sulphonamide target (folP), and the sulphonamide resistance (sul1) genes is unknown in this organism.

View Article and Find Full Text PDF

To explain losses of bees that could occur after the winter season, we studied the effects of the insecticide imidacloprid, the herbicide glyphosate and the fungicide difenoconazole, alone and in binary and ternary mixtures, on winter honey bees orally exposed to food containing these pesticides at concentrations of 0, 0.01, 0.1, 1 and 10 µg/L.

View Article and Find Full Text PDF

The sulfonamide antibiotics sulfamethoxazole (SMX) and sulfamethazine (SMZ) are regularly detected in surface sediments of contaminated hydrosystems, with maximum concentrations that can reach tens of μg kg in stream and river sediments. Little is known about the resulting effects on the exposed benthic organisms. Here we investigated the functional response of stream sediment microbial communities exposed for 4 weeks to two levels of environmentally relevant concentrations of SMX and SMZ, tested individually.

View Article and Find Full Text PDF

Chronic and repeated exposure of environmental bacterial communities to anthropogenic antibiotics have recently driven some antibiotic-resistant bacteria to acquire catabolic functions, enabling them to use antibiotics as nutritive sources (antibiotrophy). Antibiotrophy might confer a selective advantage facilitating the implantation and dispersion of antibiotrophs in contaminated environments. A microcosm experiment was conducted to test this hypothesis in an agroecosystem context.

View Article and Find Full Text PDF

Paenibacillus larvae is the causative agent of the fatal American foulbrood disease in honeybees (Apis mellifera). Strain identification is vital for preventing the spread of the disease. To date, the most accessible and robust scheme to identify strains is the multilocus sequence typing (MLST) method.

View Article and Find Full Text PDF

Honeybees ensure a key ecosystem service by pollinating many agricultural crops and wild plants. However, in the past few decades, managed bee colonies have been declining in Europe and North America. Researchers have emphasized both parasites and pesticides as the most important factors.

View Article and Find Full Text PDF

The invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.

View Article and Find Full Text PDF

The common and widespread parasite Nosema ceranae is considered a major threat to the Western honey bee at both the individual and colony levels. Several studies demonstrated that infection by this parasite may affect physiology, behavior, and survival of honey bees. N.

View Article and Find Full Text PDF

The causes underlying the increased mortality of honeybee colonies remain unclear and may involve multiple stressors acting together, including both pathogens and pesticides. Previous studies suggested that infection by the gut parasite Nosema ceranae combined with chronic exposure to sublethal doses of the insecticide fipronil generated an increase in oxidative stress in the midgut of honeybees. To explore the impact of these two stressors on oxidative balance, we experimentally infected bees with N.

View Article and Find Full Text PDF