Nitrous oxide (NO) is a long-lived greenhouse gas and currently contributes ∼10% to global greenhouse warming. Studies have suggested that inland waters are a large and growing global NO source, but whether, how, where, when, and why inland-water NO emissions changed in the Anthropocene remains unclear. Here, we quantify global NO formation, transport, and emission along the aquatic continuum and their changes using a spatially explicit, mechanistic, coupled biogeochemistry-hydrology model.
View Article and Find Full Text PDFHarmful algal blooms (HABs) have been increasing in frequency, areal extent and duration due to the large increase in nutrient inputs from land-based sources to coastal seas, and cause significant economic losses. In this study, we used the "watershed-coast-continuum" concept to explore the effects of land-based nutrient pollution on HAB development in the Eastern Chinese coastal seas (ECCS). Results from the coupling of a watershed nutrient model and a coast hydrodynamic-biogeochemical model show that between the 1980s and 2000s, the risk of diatom blooms and dinoflagellate blooms increased by 158% and 127%, respectively.
View Article and Find Full Text PDFRivers play an important role in the global carbon (C) cycle. However, it remains unknown how long-term river C fluxes change because of climate, land-use, and other environmental changes. Here, we investigated the spatiotemporal variations in global freshwater C cycling in the 20th century using the mechanistic IMAGE-Dynamic Global Nutrient Model extended with the Dynamic In-Stream Chemistry Carbon module (DISC-CARBON) that couples river basin hydrology, environmental conditions, and C delivery with C flows from headwaters to mouths.
View Article and Find Full Text PDFThis paper presents the spatially explicit (0.5° spatial resolution) Dynamic InStream Chemistry (DISC)-SILICON module, which is part of the Integrated Model to Assess the Global Environment-Dynamic Global Nutrient Model global nutrient cycling framework. This new model, for the first time, enables to integrate the combined impact of long-term changes in land use, climate, and hydrology on Si sources (weathering, sewage, and soil loss) and sinks (uptake by diatoms, sedimentation, and burial) along the river continuum.
View Article and Find Full Text PDFAssessment of the quality of freshwater bodies is essential to determine the impact of human activities on water resources. The water quality status is estimated by comparing indicators with standard thresholds. Indicators are usually statistical criteria that are calculated on discrete measurements of water quality variables.
View Article and Find Full Text PDFMaintaining low nitrite concentrations in aquatic systems is a major issue for stakeholders due to nitrite's high toxicity for living species. This study reports on a cost-effective and realistic approach to study nitrite dynamics and improve its modelling in human-impacted river systems. The implementation of different nitrifying biomasses to model riverine communities and waste water treatment plant (WWTP)-related communities enabled us to assess the impact of a major WWTP effluent on in-river nitrification dynamics.
View Article and Find Full Text PDFThis study aims at quantifying pluri-annual Total Suspended Matter (TSM) budgets, and notably the share of river navigation in total re-suspension at a long-term scale, in the Seine River along a 225 km stretch including the Paris area. Erosion is calculated based on the transport capacity concept with an additional term for the energy dissipated by river navigation. Erosion processes are fitted for the 2007-2011 period based on i) a hydrological typology of sedimentary processes and ii) a simultaneous calibration and retrospective validation procedure.
View Article and Find Full Text PDFAssessing the fate of endocrine disrupting compounds (EDCs) in the environment is currently a key issue for determining their impacts on aquatic ecosystems. The 4-nonylphenol (4-NP) is a well known EDC and results from the biodegradation of surfactant nonylphenol ethoxylates (NPnEOs). Fate mechanisms of NPnEO are well documented but their rate constants have been mainly determined through laboratory experiments.
View Article and Find Full Text PDFThis study aims at modelling the daily concentrations of nonylphenolic compounds such as 4-nonylphenol (4-NP), nonylphenol monoethoxylate (NP1EO) and nonylphenoxy acetic acid (NP1EC) within the Seine River downstream of Paris City for over a year, firstly in the present state (year 2010) and for years 2050 and 2100 in order to assess the consequences of global change on the fate of nonylphenolic compounds in the Seine river. Concentrations were first simulated for the year 2010 and compared to monthly measured values downstream of Paris. To achieve this goal, the hydrodynamic and biogeochemical model, ProSe, was updated to simulate the fate of 4-NP, NP1EO and NP1EC.
View Article and Find Full Text PDF