Animal models are vital in understanding the transmission and pathogenesis of infectious organisms and the host immune response to infection. In addition, animal models are essential in vaccine and therapeutic drug development and testing. Prior to selecting an animal model to use when studying an infectious agent, the scientific team must determine that sufficient in vitro and ex vivo data are available to justify performing research in an animal model, that ethical considerations are addressed, and that the data generated from animal work will add useful information to the body of scientific knowledge.
View Article and Find Full Text PDFBacillus cereus strains harboring a pXO1-like virulence plasmid cause respiratory anthrax-like disease in humans, particularly in welders. We developed mouse models for intraperitoneal as well as aerosol challenge with spores of B. cereus G9241, harboring pBCXO1 and pBC218 virulence plasmids.
View Article and Find Full Text PDFNonpigmented Yersinia pestis (pgm) strains are defective in scavenging host iron and have been used in live-attenuated vaccines to combat plague epidemics. Recently, a Y. pestis pgm strain was isolated from a researcher with hereditary hemochromatosis who died from laboratory-acquired plague.
View Article and Find Full Text PDFCurrent efforts to develop plague vaccines focus on LcrV, a polypeptide that resides at the tip of type III secretion needles. LcrV-specific antibodies block Yersinia pestis type III injection of Yop effectors into host immune cells, thereby enabling phagocytes to kill the invading pathogen. Earlier work reported that antibodies against Y.
View Article and Find Full Text PDFYersinia pestis causes plague, a disease with high mortality in humans that can be transmitted by fleabite or aerosol. A US Food and Drug Administration (FDA)-licensed plague vaccine is currently not available. Vaccine developers have focused on two subunits of Y.
View Article and Find Full Text PDFObjective: The pathogenesis and the outcome of Pseudomonas aeruginosa ventilator-acquired pneumonia depend on the virulence factors displayed by the bacteria as well as the host response. Thus, quorum sensing, lipopolysaccharide, and type 3 secretion system have each individually been shown to be important virulence systems in laboratory reference strains. However, the relative contribution of these three factors to the in vivo pathogenicity of clinically relevant strains has never been studied.
View Article and Find Full Text PDFHuman pneumonic plague is a devastating and transmissible disease for which a Food and Drug Administration-approved vaccine is not available. Suitable animal models may be adopted as a surrogate for human plague to fulfill regulatory requirements for vaccine efficacy testing. To develop an alternative to pneumonic plague in nonhuman primates, we explored guinea pigs as a model system.
View Article and Find Full Text PDFLcrV, a protein that resides at the tip of the type III secretion needles of Yersinia pestis, is the single most important plague protective antigen. Earlier work reported monoclonal antibody MAb 7.3, which binds a conformational epitope of LcrV and protects experimental animals against lethal plague challenge.
View Article and Find Full Text PDFYersinia pestis is the causative agent of bubonic and pneumonic plague, human diseases with high mortality. Due to the microbe's ability to spread rapidly, plague epidemics present a serious public health threat. A search for prophylactic measures was initially based on historical reports of bubonic plague survivors and their apparent immunity.
View Article and Find Full Text PDFYersinia pestis is perhaps the most feared infectious agent due to its ability to cause epidemic outbreaks of plague disease in animals and humans with high mortality. Plague infections elicit strong humoral immune responses against the capsular antigen (fraction 1 [F1]) of Y. pestis, and F1-specific antibodies provide protective immunity.
View Article and Find Full Text PDFVaccine and therapeutic strategies that prevent infections with Yersinia pestis have been sought for over a century. Immunization with live attenuated (nonpigmented) strains and immunization with subunit vaccines containing recombinant low-calcium-response V antigen (rLcrV) and recombinant F1 (rF1) antigens are considered effective in animal models. Current antiplague subunit vaccines in development for utilization in humans contain both antigens, either as equal concentrations of the two components (rF1 plus rLcrV) or as a fusion protein (rF1-rLcrV).
View Article and Find Full Text PDFObjective: Pseudomonas aeruginosa is a ubiquitous and opportunistic pathogen that uses the type III secretion system (TTSS) to inject effector proteins directly into the cytosol of target cells to subvert the host cell's functions. Specialized bacterial chaperones are required for effective secretion of some effectors. To identify the chaperone of ExoS, the representative effector secreted by the TTSS of P.
View Article and Find Full Text PDFYersinia pestis, the highly virulent agent of plague, is a biological weapon. Strategies that prevent plague have been sought for centuries, and immunization with live, attenuated (nonpigmented) strains or subunit vaccines with F1 (Caf1) antigen is considered effective. We show here that immunization with live, attenuated strains generates plague-protective immunity and humoral immune responses against F1 pilus antigen and LcrV.
View Article and Find Full Text PDFPlague, an infectious disease that reached catastrophic proportions during three pandemics, continues to be a legitimate public health concern worldwide. Although antibiotic therapy for the causative agent Yersinia pestis is available, pharmaceutical supply limitations, multi-drug resistance from natural selection as well as malicious bioengineering are a reality. Consequently, plague vaccinology is a priority for biodefense research.
View Article and Find Full Text PDFYersinia enterocolitica uses type III secretion to transport Yop proteins into the cytoplasm of host cells. Previous work generated hypotheses for both co- and post-translational transport mechanisms in the Yersinia type III pathway. Here, we used ubiquitin (Ub) and UBP1, the Ub-specific protease, to examine whether Yops can be secreted when synthesized prior to recognition by the type III machinery.
View Article and Find Full Text PDFImmunotherapy requiring an efficient T lymphocyte response is initiated by antigen delivery to antigen-presenting cells. Several studies have assessed the efficiency of various antigen loading procedures, including microbial vectors. Here a live strain of Pseudomonas aeruginosa was engineered to translocate a recombinant antigenic protein into mammalian cells via the type III secretion system, a bacterial device translocating effector proteins into host cells.
View Article and Find Full Text PDFThe complete genome of the bacterial pathogen Pseudomonas aeruginosa has now been sequenced, allowing gene deletion, one of the most frequently used methods in gene function study, to be fully exploited. In this study, we combine the sacB-based negative selection system with a cre-lox antibiotic marker recycling method. This methodology allows allelic exchange between a target gene and a gentamicin cassette flanked by the two lox sequences.
View Article and Find Full Text PDF