Publications by authors named "Lauri Kettunen"

Purpose: Pelvic bone segmentation and landmark definition from computed tomography (CT) images are prerequisite steps for the preoperative planning of total hip arthroplasty. In clinical applications, the diseased pelvic anatomy usually degrades the accuracies of bone segmentation and landmark detection, leading to improper surgery planning and potential operative complications.

Methods: This work proposes a two-stage multi-task algorithm to improve the accuracy of pelvic bone segmentation and landmark detection, especially for the diseased cases.

View Article and Find Full Text PDF

Purpose: The training of deep medical image segmentation networks usually requires a large amount of human-annotated data. To alleviate the burden of human labor, many semi- or non-supervised methods have been developed. However, due to the complexity of clinical scenario, insufficient training labels still causes inaccurate segmentation in some difficult local areas such as heterogeneous tumors and fuzzy boundaries.

View Article and Find Full Text PDF

Purpose: Training deep neural networks usually require a large number of human-annotated data. For organ segmentation from volumetric medical images, human annotation is tedious and inefficient. To save human labour and to accelerate the training process, the strategy of annotation by iterative deep learning recently becomes popular in the research community.

View Article and Find Full Text PDF

The development of medical image analysis algorithm is a complex process including the multiple sub-steps of model training, data visualization, human-computer interaction and graphical user interface (GUI) construction. To accelerate the development process, algorithm developers need a software tool to assist with all the sub-steps so that they can focus on the core function implementation. Especially, for the development of deep learning (DL) algorithms, a software tool supporting training data annotation and GUI construction is highly desired.

View Article and Find Full Text PDF

This study evaluated two approaches for estimating the total propulsive force on a skier's center of mass (COM) with double-poling (DP) and V2-skating (V2) skiing techniques. We also assessed the accuracy and the stability of each approach by changing the speed and the incline of the treadmill. A total of 10 cross-country skiers participated in this study.

View Article and Find Full Text PDF

Deep learning has achieved unprecedented success in sleep stage classification tasks, which starts to pave the way for potential real-world applications. However, due to its enormous size, deployment of deep neural networks is hindered by high cost at various aspects, such as computation power, storage, network bandwidth, power consumption, and hardware complexity. For further practical applications (e.

View Article and Find Full Text PDF