We report a measurement of exclusive J/ψ and ψ(2s) photoproduction in Au+Au ultraperipheral collisions at sqrt[s_{NN}]=200 GeV using the STAR detector. For the first time, (i) the ψ(2s) photoproduction in midrapidity at the Relativistic Heavy-Ion Collider has been experimentally measured; (ii) nuclear suppression factors are measured for both the coherent and incoherent J/ψ production. At average photon-nucleon center-of-mass energy of 25.
View Article and Find Full Text PDFRecent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies.
View Article and Find Full Text PDFPerovskite nanocrystals have attracted much attention in the last ten years due to their different applications, especially in the photovoltaic domain and LED performance. In this large family of perovskite nanocrystals, CsPbBr nanocrystals are attractive nanomaterials because they are good candidates for obtaining green emissions and exploring new synthesis routes. In this context, controlling the nanometric scale's morphology, particularly the size and monodispersity, is fundamental for exploring their photophysical properties and final applications.
View Article and Find Full Text PDFWe report on speeding-up equilibrium recovery in the previously unexplored general case of the underdamped regime using an optically levitated particle. We accelerate the convergence toward equilibrium by an order of magnitude compared to the natural relaxation time. We then discuss the efficiency of the studied protocols, especially for a multidimensional system.
View Article and Find Full Text PDFNanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials.
View Article and Find Full Text PDFWe report on measurements of sequential ϒ suppression in Au+Au collisions at sqrt[s_{NN}]=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider (RHIC) through both the dielectron and dimuon decay channels. In the 0%-60% centrality class, the nuclear modification factors (R_{AA}), which quantify the level of yield suppression in heavy-ion collisions compared to p+p collisions, for ϒ(1S) and ϒ(2S) are 0.40±0.
View Article and Find Full Text PDFWe report the beam energy and collision centrality dependence of fifth and sixth order cumulants (C_{5}, C_{6}) and factorial cumulants (κ_{5}, κ_{6}) of net-proton and proton number distributions, from center-of-mass energy (sqrt[s_{NN}]) 3 GeV to 200 GeV Au+Au collisions at RHIC. Cumulant ratios of net-proton (taken as proxy for net-baryon) distributions generally follow the hierarchy expected from QCD thermodynamics, except for the case of collisions at 3 GeV. The measured values of C_{6}/C_{2} for 0%-40% centrality collisions show progressively negative trend with decreasing energy, while it is positive for the lowest energy studied.
View Article and Find Full Text PDFPhys Rev Lett
December 2022
Elliptic flow measurements from two-, four-, and six-particle correlations are used to investigate flow fluctuations in collisions of U+U at sqrt[s_{NN}]=193 GeV, Cu+Au at sqrt[s_{NN}]=200 GeV and Au+Au spanning the range sqrt[s_{NN}]=11.5-200 GeV. The measurements show a strong dependence of the flow fluctuations on collision centrality, a modest dependence on system size, and very little if any, dependence on particle species and beam energy.
View Article and Find Full Text PDFThe STAR Collaboration reports measurements of back-to-back azimuthal correlations of di-π^{0}s produced at forward pseudorapidities (2.6<η<4.0) in p+p, p+Al, and p+Au collisions at a center-of-mass energy of 200 GeV.
View Article and Find Full Text PDFWe report precision measurements of hypernuclei _{Λ}^{3}H and _{Λ}^{4}H lifetimes obtained from Au+Au collisions at sqrt[s_{NN}]=3.0 GeV and 7.2 GeV collected by the STAR experiment at the Relativistic Heavy Ion Collider, and the first measurement of _{Λ}^{3}H and _{Λ}^{4}H midrapidity yields in Au+Au collisions at sqrt[s_{NN}]=3.
View Article and Find Full Text PDFWe report cumulants of the proton multiplicity distribution from dedicated fixed-target Au+Au collisions at sqrt[s_{NN}]=3.0 GeV, measured by the STAR experiment in the kinematic acceptance of rapidity (y) and transverse momentum (p_{T}) within -0.5
A new synthetic method for preparing highly calibrated CsPbBr nanocrystal perovskites is described and analyzed using high-resolution scanning transmission electron microscopy. This new method based on soft chemistry leads to the large-scale production of nanocrystals. Such monodisperse nanocrystals allow for the deposition of homogeneous films, which provides new opportunities for the next generation of optoelectronic devices.
View Article and Find Full Text PDFUnderstanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultraperipheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy sqrt[s_{NN}]=200 GeV in d+Au collisions.
View Article and Find Full Text PDFThe chiral magnetic effect (CME) refers to charge separation along a strong magnetic field due to imbalanced chirality of quarks in local parity and charge-parity violating domains in quantum chromodynamics. The experimental measurement of the charge separation is made difficult by the presence of a major background from elliptic azimuthal anisotropy. This background and the CME signal have different sensitivities to the spectator and participant planes, and could thus be determined by measurements with respect to these planes.
View Article and Find Full Text PDFAtomically precise graphene quantum dots synthesized by bottom-up chemistry are promising versatile single emitters with potential applications for quantum photonic technologies. Toward a better understanding and control of graphene quantum dot (GQD) optical properties, we report on single-molecule spectroscopy at cryogenic temperature. We investigate the effect of temperature on the GQDs' spectral linewidth and vibronic replica, which we interpret building on density functional theory calculations.
View Article and Find Full Text PDFGraphene quantum dots, atomically precise nanopieces of graphene, are promising nano-objects with potential applications in various domains such as photovoltaics, quantum light emitters and bio-imaging. Despite their interesting prospects, precise reports on their photophysical properties remain scarce. Here, we report on a study of the photophysics of CH(CH) graphene quantum dots.
View Article and Find Full Text PDFAccording to first-principle lattice QCD calculations, the transition from quark-gluon plasma to hadronic matter is a smooth crossover in the region μ_{B}≤T_{c}. In this range the ratio, C_{6}/C_{2}, of net-baryon distributions are predicted to be negative. In this Letter, we report the first measurement of the midrapidity net-proton C_{6}/C_{2} from 27, 54.
View Article and Find Full Text PDFUsing femtosecond transient absorption (fs-TA), we investigate the hot exciton relaxation dynamics in strongly confined lead iodide perovskite nanoplatelets (NPLs). The large quantum and dielectric confinement leads to discrete excitonic transitions and strong Stark features in the TA spectra. This prevents the use of conventional relaxation analysis methods extracting the carrier temperature or measuring the buildup of the band-edge bleaching.
View Article and Find Full Text PDFTaking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface.
View Article and Find Full Text PDFSensitization of graphene with inorganic semiconducting nanostructures has been demonstrated as a powerful strategy to boost its optoelectronic performance. However, the limited tunability of optical properties and toxicity of metal cations in the inorganic sensitizers prohibits their widespread applications, and the in-depth understanding of the essential interfacial charge-transfer process within such hybrid systems remains elusive. Here, we design and develop high-quality nanographene (NG) dispersions with a large-scale production using high-shear mixing exfoliation.
View Article and Find Full Text PDFThe synthesis of π-extended porphyrins containing anthracenyl moieties still represents an important challenge. Here, we report on the synthesis of a series of unsubstituted naphthyl-, pyrenyl- and anthracenyl-fused zinc porphyrin derivatives. To this aim, meso-substitued porphyrins are synthesized and the fusion of the PAHs (Polycyclic Aromatic Hydrocarbon) on the β-positions are performed through thermally induced dehydro-aromatization.
View Article and Find Full Text PDFWe report on the first measurement of charm-strange meson D_{s}^{±} production at midrapidity in Au+Au collisions at sqrt[s_{NN}]=200 GeV from the STAR experiment. The yield ratio between strange (D_{s}^{±}) and nonstrange (D^{0}) open-charm mesons is presented and compared to model calculations. A significant enhancement, relative to a pythia simulation of p+p collisions, is observed in the D_{s}^{±}/D^{0} yield ratio in Au+Au collisions over a large range of collision centralities.
View Article and Find Full Text PDFThe Breit-Wheeler process which produces matter and antimatter from photon collisions is experimentally investigated through the observation of 6085 exclusive electron-positron pairs in ultraperipheral Au+Au collisions at sqrt[s_{NN}]=200 GeV. The measurements reveal a large fourth-order angular modulation of cos4Δϕ=(16.8±2.
View Article and Find Full Text PDF