Publications by authors named "Laurenzana E"

Context: Melatonin influences female reproduction, but expression of the melatonin system has not been characterised in the ovine uterus.

Aims: We aimed to determine whether synthesising enzymes (arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT)), melatonin receptors 1 and 2 (MT1 and MT2), and catabolising enzymes (myeloperoxidase (MPO) and indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and 2)), are expressed in the ovine uterus, and if they are influenced by the oestrous cycle (Experiment 1) or by undernutrition (Experiment 2).

Methods: In Experiment 1, gene and protein expression was determined in sheep endometrium samples collected on days 0 (oestrus), 5, 10 and 14 of the oestrous cycle.

View Article and Find Full Text PDF

Humans in industrialized areas are continuously exposed to phthalate plasticizers, prompting concerns of their potential toxicities. Previous studies from our laboratory and others have shown that various phthalates activate several mammalian nuclear receptors, in particular the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the peroxisomal proliferator-activated receptors (PPARs), although often at concentration levels of questionable relevance to human exposure. We discovered that di(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DiNP), two of the highest volume production agents, were potent activators of human CAR2 (hCAR2), a unique human CAR splice variant and, to a lesser degree, human PXR (hPXR).

View Article and Find Full Text PDF

This lead candidate selection study compared two anti-(+)-methamphetamine (METH) monoclonal antibodies (mAb) to determine their ability to reduce METH-induced locomotor effects and redistribute METH and (+)-amphetamine (AMP) in a preclinical overdose model. Both mAbs have high affinity for METH, but mAb4G9 has moderate and mAb7F9 has low affinity for AMP. In the placebo-controlled behavioral experiment, the effects of each mAb on the locomotor response to a single 1 mg/kg intravenous (IV) METH dose were determined in rats.

View Article and Find Full Text PDF

We hypothesized that treatment of pregnant rat dams with a dual reactive monoclonal antibody (mAb4G9) against (+)-methamphetamine [METH; equilibrium dissociation rate constant (KD) = 16 nM] and (+)-amphetamine (AMP; KD = 102 nM) could confer maternal and fetal protection from brain accumulation of both drugs of abuse. To test this hypothesis, pregnant Sprague-Dawley rats (on gestational day 21) received a 1 mg/kg i.v.

View Article and Find Full Text PDF

The CAR (constitutive androstane receptor; NR1I3) is a critical xenobiotic sensor that regulates xenobiotic metabolism, drug clearance, energy and lipid homoeostasis, cell proliferation and development. Although constitutively active, in hepatocytes CAR is normally held quiescent through a tethering mechanism in the cytosol, anchored to a protein complex that includes several components, including heat-shock protein 90. Release and subsequent nuclear translocation of CAR is triggered through either direct binding to ligand activators such as CITCO {6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime} or through indirect chemical activation, such as with PB (phenobarbital).

View Article and Find Full Text PDF

Regulation of gene transcription is controlled in part by nuclear receptors that function coordinately with coregulator proteins. The human constitutive androstane receptor (CAR; NR1I3) is expressed primarily in liver and regulates the expression of genes involved in xenobiotic metabolism as well as hormone, energy, and lipid homeostasis. In this report, DAX-1, a nuclear receptor family member with corepressor properties, was identified as a potent CAR regulator.

View Article and Find Full Text PDF

Illicit drug use during pregnancy is a serious social and public health problem inflicting an array of deleterious effects on both mother and offspring. We investigated the hypothesis that a murine anti-phencyclidine (PCP) monoclonal antibody (mAb6B5; K(D)=1.3 nM) can safely protect mother and fetus from PCP-induced adverse health effects in pregnant rats.

View Article and Find Full Text PDF

The constitutive androstane receptor (CAR; NR1I3) is a member of the nuclear receptor superfamily and functions as an important xenochemical sensor and transcriptional modulator in mammalian cells. Upon chemical activation, CAR undergoes nuclear translocation and heterodimerization with the retinoid X receptor subsequent to its DNA target interaction. CAR is unusual among nuclear receptors in that it possesses a high level of constitutive activity in cell-based assays, obscuring the detection of ligand activators.

View Article and Find Full Text PDF

We tested the hypothesis that differences in (+)-methamphetamine (METH) disposition during late rat pregnancy could lead to increased vulnerability to acute METH effects. The disposition of a single 1 mg/kg i.v.

View Article and Find Full Text PDF

Phthalates and other endocrine-disruptive chemicals are manufactured in large quantities for use as plasticizers and other commercial applications, resulting in ubiquitous human exposure and thus, concern regarding their toxicity. Innate defense against small molecule exposures is controlled in large part by the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). The human CAR gene undergoes multiple alternative splicing events resulting in the CAR2 and CAR3 variant receptors.

View Article and Find Full Text PDF

During preclinical development of neuroprotective antiaddiction therapeutic monoclonal antibodies (mAbs) against phencyclidine (PCP) and (+)-methamphetamine, we discovered novel, gestation stage-specific changes in mAb disposition spanning the entire reproductive cycle of female rats. Each pharmacological change was independent of mAb dose and antigen target but was precisely coincident with transitions between the gestational trimesters, parturition, and lactation periods of the female reproductive cycle. Whereas anti-PCP mAb6B5 terminal elimination half-life (t(1/2λz)) in nonpregnant females was 6.

View Article and Find Full Text PDF

Increasingly, research suggests that for certain systems, animal models are insufficient for human toxicology testing. The development of robust, in vitro models of human toxicity is required to decrease our dependence on potentially misleading in vivo animal studies. A critical development in human toxicology testing is the use of human primary hepatocytes to model processes that occur in the intact liver.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory signaling, particularly through the cytokine IL-6, is crucial for tumor progression, with the aryl hydrocarbon receptor (AHR) playing a significant role in IL-6 expression when activated by external ligands.
  • Screening of metabolites from the indoleamine-2,3-dioxygenase pathway identified kynurenic acid (KA) as an effective agonist for AHR, which is necessary for inducing pathways relevant to tumor biology and metabolism.
  • Treatment with KA and inflammatory signals like interleukin-1beta in breast cancer cells leads to increased IL-6 production, highlighting KA's potential as an endogenous AHR ligand that can influence tumor behavior and metabolism at normal biological concentrations.
View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in the regulation of multiple cellular pathways, such as xenobiotic metabolism and Th17 cell differentiation. Identification of key physiologically relevant ligands that regulate AHR function remains to be accomplished. Screening of indole metabolites has identified indoxyl 3-sulfate (I3S) as a potent endogenous ligand that selectively activates the human AHR at nanomolar concentrations in primary human hepatocytes, regulating transcription of multiple genes, including CYP1A1, CYP1A2, CYP1B1, UGT1A1, UGT1A6, IL6, and SAA1.

View Article and Find Full Text PDF

These studies examined the in vivo pharmacokinetics and efficacy of five anti-methamphetamine monoclonal antibodies (mAbs, K(D) values from 11 to 250 nM) in rats. While no substantive differences in mAb systemic clearance (t(1/2)=6.1-6.

View Article and Find Full Text PDF

Chronic (+)-methamphetamine (METH) use during pregnancy increases the health risk for both mother and fetus. To provide insights into these risks, the relationship between changes in METH disposition and METH-induced pharmacological effects were studied in Sprague-Dawley rat dams and litters. Timed-pregnant rats (n = 5-6) were given saline or METH (5.

View Article and Find Full Text PDF

Chronic or excessive (+)-methamphetamine (METH) use often leads to addiction and toxicity to critical organs like the brain. With medical treatment as a goal, a novel single-chain variable fragment (scFv) against METH was engineered from anti-METH monoclonal antibody mAb6H4 (IgG, kappa light chain, K(d) = 11 nM) and found to have similar ligand affinity (K(d) = 10 nM) and specificity as mAb6H4. The anti-METH scFv (scFv6H4) was cloned, expressed in yeast, purified, and formulated as a naturally occurring mixture of monomer ( approximately 75%) and dimer ( approximately 25%).

View Article and Find Full Text PDF

Previously, our laboratory produced a high affinity, anti-phencyclidine (PCP) murine monoclonal antibody (mAb6B5) that also binds other PCP-like arylcyclohexylamines. In this project, mAb6B5 is engineered into a mouse/human chimera (ch-mAb6B5) to assess the feasibility of developing it into a medication for PCP and PCP-like drug abuse. To create ch-mAb6B5, the light and heavy chain constant regions of mAb6B5 were replaced with human kappa and IgG(2) constant regions in order to decrease its potential immunogenicity in humans.

View Article and Find Full Text PDF

(+)-Methamphetamine (METH) and (+)-amphetamine (AMP) are structurally similar drugs that are reported to induce similar pharmacological effects in rats of the same sex. Because pharmacokinetic data suggest female rats should be more affected than males, the current studies sought to test the hypothesis that the behavioral and temporal actions of METH and AMP should be greater in female Sprague-Dawley rats than in males. Using a dosing regimen designed to reduce the possibility of tolerance and sensitization, rats were administered 1.

View Article and Find Full Text PDF

High-throughput liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) methodology for the determination of methamphetamine (METH), amphetamine (AMP), 4-hydroxymethamphetamine (4-OH-METH), and 4-hydroxyamphetamine (4-OH-AMP) was developed and validated using simple trichloroacetic acid sample treatment. The method was validated in rat serum, brain, and testis. Lower limits-of-quantitation (LOQ) for METH and AMP were 1 ng x mL(-1) using positive ion electrospray tandem mass spectrometry (MS/MS).

View Article and Find Full Text PDF

The purpose of these studies was to determine if a high-affinity, anti-(+)-methamphetamine (METH) monoclonal antibody (mAb6H4; KD=11 nM) protects against METH-induced central nervous and cardiovascular system effects in rats. Rats (n=5 per group) received one of three anti-METH mAb6H4 doses, equal to 0.32, 0.

View Article and Find Full Text PDF

The effectiveness of a high-affinity monoclonal antibody (mAb) antagonist against chronic phencyclidine (PCP) use has been demonstrated in rats. In this study, we tested the hypothesis that intravenous doses of PCP in excess of the binding capacity of an anti-PCP mAb cannot easily surmount the beneficial effects of the mAb, even in the presence of a high body burden of the drug. One day after steady-state PCP concentrations were achieved in male rats by continuous s.

View Article and Find Full Text PDF

Feeding soy diets has been shown to induce cytochrome P450s in gene family CYP3A in Sprague-Dawley rat liver. We compared expression of CYP3A enzymes on postnatal Day 33 (PND33) rats fed casein or soy protein isolate (SPI+)-based AIN-93G diets continuously from gestational Day 4 through PND33 or the diets were switched on PND15 (n = 3-6 litters) to examine the potential imprinting effects of soy on drug metabolism. In addition rats were fed casein, SPI+, SPI+ stripped of phytochemicals (SPI-), or casein diets supplemented with the soy-associated isoflavones genistein or daidzein from weaning through PND33 to examine the hypothesis that the isoflavones are responsible for CYP3A induction by soy feeding.

View Article and Find Full Text PDF

The roles of monoclonal antibody affinity and treatment time of (+)-methamphetamine-induced pharmacological effects in rats were studied using two anti-(+)-methamphetamine monoclonal antibodies. These studies tested the preclinical protective effects of monoclonal antibody antagonists in (+)-methamphetamine overdose and pretreatment scenarios. The higher affinity antibody (mAb6H4; KD=11 nM for (+)-methamphetamine) more effectively antagonized (+)-methamphetamine-induced behavioral effects (distance and rearing) than the low affinity antibody (designated mAb6H8; KD=250 nM) and had a longer duration of action.

View Article and Find Full Text PDF

These studies investigated how (+)-methamphetamine (METH) dose and rat sex affect the pharmacological response to METH in Sprague-Dawley rats. The first set of experiments determined the pharmacokinetics of METH and its pharmacologically active metabolite (+)-amphetamine (AMP) in male and female Sprague-Dawley rats after 1.0 and 3.

View Article and Find Full Text PDF