Publications by authors named "Laurenz Rettig"

The topology of the electronic band structure of solids can be described by its Berry curvature distribution across the Brillouin zone. We theoretically introduce and experimentally demonstrate a general methodology based on the measurement of energy- and momentum-resolved optical transition rates, allowing to reveal signatures of Berry curvature texture in reciprocal space. By performing time- and angle-resolved photoemission spectroscopy of atomically thin WSe using polarization-modulated excitations, we demonstrate that excitons become an asset in extracting the quantum geometrical properties of solids.

View Article and Find Full Text PDF
Article Synopsis
  • * A new pipeline combining probabilistic machine learning with data processing and optimization methods was developed to efficiently reconstruct all 14 valence bands of a semiconductor from photoemission data.
  • * This approach successfully reveals detailed momentum-space structural information and paves the way for integrating machine learning techniques with materials science databases, showcasing the benefits of merging advanced technologies with domain expertise.
View Article and Find Full Text PDF
Article Synopsis
  • Metastable phases are being explored for their potential to enhance the functionality of complex materials, especially those induced by light, which can exhibit unique properties that change rapidly.
  • The research focuses on the ultrafast dynamics of a hidden quantum state in the material 1-TaS, using advanced spectroscopy techniques to understand how these phases form when light is applied.
  • The findings indicate a nonthermal transition driven by a collective excitation, showcasing the ability to control the efficiency of this phase transition, which has promising implications for future electronic and photonic devices.
View Article and Find Full Text PDF

Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe/graphene heterostructure.

View Article and Find Full Text PDF

Singlet fission may boost photovoltaic efficiency by transforming a singlet exciton into two triplet excitons and thereby doubling the number of excited charge carriers. The primary step of singlet fission is the ultrafast creation of the correlated triplet pair. Whereas several mechanisms have been proposed to explain this step, none has emerged as a consensus.

View Article and Find Full Text PDF

Hybrid plasmonic devices involve a nanostructured metal supporting localized surface plasmons to amplify light-matter interaction, and a non-plasmonic material to functionalize charge excitations. Application-relevant epitaxial heterostructures, however, give rise to ballistic ultrafast dynamics that challenge the conventional semiclassical understanding of unidirectional nanometal-to-substrate energy transfer. Epitaxial Au nanoislands are studied on WSe with time- and angle-resolved photoemission spectroscopy and femtosecond electron diffraction: this combination of techniques resolves material, energy, and momentum of charge-carriers and phonons excited in the heterostructure.

View Article and Find Full Text PDF

Rashba materials have appeared as an ideal playground for spin-to-charge conversion in prototype spintronics devices. Among them, α-GeTe(111) is a non-centrosymmetric ferroelectric semiconductor for which a strong spin-orbit interaction gives rise to giant Rashba coupling. Its room temperature ferroelectricity was recently demonstrated as a route towards a new type of highly energy-efficient non-volatile memory device based on switchable polarization.

View Article and Find Full Text PDF

Two-dimensional quantum spin Hall (QSH) insulators are a promising material class for spintronic applications based on topologically protected spin currents in their edges. Yet, they have not lived up to their technological potential, as experimental realizations are scarce and limited to cryogenic temperatures. These constraints have also severely restricted characterization of their dynamical properties.

View Article and Find Full Text PDF

Fermi surface is at the heart of our understanding of metals and strongly correlated many-body systems. An abrupt change in the Fermi surface topology, also called Lifshitz transition, can lead to the emergence of fascinating phenomena like colossal magnetoresistance and superconductivity. While Lifshitz transitions have been demonstrated for a broad range of materials by equilibrium tuning of macroscopic parameters such as strain, doping, pressure, and temperature, a nonequilibrium dynamical route toward ultrafast modification of the Fermi surface topology has not been experimentally demonstrated.

View Article and Find Full Text PDF

Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization.

View Article and Find Full Text PDF

Time-resolved soft-x-ray photoemission spectroscopy is used to simultaneously measure the ultrafast dynamics of core-level spectral functions and excited states upon excitation of excitons in WSe_{2}. We present a many-body approximation for the Green's function, which excellently describes the transient core-hole spectral function. The relative dynamics of excited-state signal and core levels clearly show a delayed core-hole renormalization due to screening by excited quasifree carriers resulting from an excitonic Mott transition.

View Article and Find Full Text PDF

Image symmetrization is an effective strategy to correct symmetry distortion in experimental data for which symmetry is essential in the subsequent analysis. In the process, a coordinate transform, the symmetrization transform, is required to undo the distortion. The transform may be determined by image registration (i.

View Article and Find Full Text PDF

Material properties can be controlled via strain, pressure, chemical composition, or dimensionality. Nickelates are particularly susceptible due to their strong variations of the electronic and magnetic properties on such external stimuli. Here, we analyze the photoinduced dynamics in a single crystalline NdNiO film upon excitation across the electronic gap.

View Article and Find Full Text PDF

The interplay between the electronic and lattice degrees of freedom in nonequilibrium states of strongly correlated systems has been debated for decades. Although progress has been made in establishing a hierarchy of electronic interactions with the use of time-resolved techniques, the role of the phonons often remains in dispute, a situation highlighting the need for tools that directly probe the lattice. We present the first combined megaelectron volt ultrafast electron diffraction and time- and angle-resolved photoemission spectroscopy study of optimally doped BiSrCaCuO.

View Article and Find Full Text PDF