Fibroblast growth factor-2 (FGF-2) is involved in wound healing and embryonic development. Glycosaminoglycans (GAGs), the major components of the extracellular matrix (ECM), play fundamental roles at this level. FGF-GAG noncovalent interactions are in the focus of research, due to their influence upon cell proliferation and tissue regeneration.
View Article and Find Full Text PDFTelocytes (TCs) are new cellular entities of mesenchymal origin described almost ubiquitously in human and mammalian organs (www.telocytes.com).
View Article and Find Full Text PDFTelocytes (TCs) were previously shown by our group to form a tandem with stem/progenitor cells in cardiac stem cell (CSC) niches, fulfilling various roles in cardiac renewal. Among these, the ability to 'nurse' CSCs in situ, both through direct physical contact (junctions) as well as at a distance, by paracrine signalling or through extracellular vesicles containing mRNA. We employed electron microscopy to identify junctions (such as gap or adherens junctions) in a co-culture of cardiac TCs and CSCs.
View Article and Find Full Text PDFMol Cell Biochem
December 2015
Telocytes (TCs) are a novel cell type identified among interstitial cells in various organs. TCs are characterized by very long cell processes (tens to hundreds micrometres) named telopodes (Tps) with uneven calibre: dilations (podoms) and very thin segments (podomers). However, little is known about the factors which influence Tps conformation.
View Article and Find Full Text PDFTelocytes (TCs) are interstitial cells that are present in numerous organs, including the heart interstitial space and cardiac stem cell niche. TCs are completely different from fibroblasts. TCs release extracellular vesicles that may interact with cardiac stem cells (CSCs) via paracrine effects.
View Article and Find Full Text PDFIn the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode.
View Article and Find Full Text PDFWe have shown in 2012 the existence of telocytes (TCs) in human dermis. TCs were described by transmission electron microscopy (TEM) as interstitial cells located in non-epithelial spaces (stroma) of many organs (see www.telocytes.
View Article and Find Full Text PDFLiver fibrosis is a wound-healing response which engages a variety of cell types to encapsulate injury. Telocyte (TC), a novel type of interstitial cell, has been identified in a variety of tissues and organs including liver. TCs have been reported to be reduced in fibrotic areas after myocardial infarction, human interstitial wall's fibrotic remodelling caused either by ulcerative colitis or Crohn's disease, and skin of systemic sclerosis.
View Article and Find Full Text PDFJ Cell Mol Med
February 2015
Telocytes (TCs) are cells ubiquitously distributed in the body and characterized by very long and thin prolongations named telopodes (Tps). Cardiac TCs are the best characterized TCs for the moment. Tps release extracellular vesicles (EVs) in vivo and in vitro suggesting that TCs regulate the activity of other cells by vesicular paracrine signals.
View Article and Find Full Text PDFTradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit www.telocytes.
View Article and Find Full Text PDFTelocytes (TCs) are a novel interstitial (stromal) cell type described in many tissues and organs (www.telocytes.com).
View Article and Find Full Text PDFTelocytes (TCs) were identified as a distinct cellular type of the interstitial tissue and defined as cells with extremely long telopodes (Tps). Our previous data demonstrated patterns of mouse TC-specific gene profiles on chromosome 1. The present study focuses on the identification of characters and patterns of TC-specific or TC-dominated gene expression profiles in chromosome 2 and 3, the network of principle genes and potential functional association.
View Article and Find Full Text PDFTelocytes have been reported to play an important role in long-distance heterocellular communication in normal and diseased heart, both through direct contact (atypical junctions), as well as by releasing extracellular vesicles (EVs) which may act as paracrine mediators. Exosomes and ectosomes are the two main types of EVs, as classified by size and the mechanism of biogenesis. Using electron microscopy (EM) and electron tomography (ET) we have found that telocytes in culture release at least three types of EVs: exosomes (released from endosomes; 45 ± 8 nm), ectosomes (which bud directly from the plasma membrane; 128 ± 28 nm) and multivesicular cargos (MVC; 1 ± 0.
View Article and Find Full Text PDFRecently, telocytes (TCs) were described as a new cell type in the interstitial space of many organs, including myometrium. TCs are cells with very long, distinctive extensions named telopodes (Tps). It is suggested that TCs play a major role in intercellular signaling, as well as in morphogenesis, especially in morphogenetic bioelectrical signaling.
View Article and Find Full Text PDFSingle cell transcriptome defined as the entire RNA or polyadenylated products of RNA polymerase II on a cell can describe the gene regulation networks responsible for physiological functions, behaviours, and phenotypes in response to signals and microenvironmental changes. Single cell transcriptome/sequencing has the special power to investigate small groups of differentiating cells, circulating tumour cells, or tissue stem cells. A large number of factors may influence the extent of single-cell heterogeneity within a system.
View Article and Find Full Text PDFTelocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com).
View Article and Find Full Text PDFAims: Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators.
View Article and Find Full Text PDFOctamer binding trascription factor 4 (Oct4) is a transcription factor of POU family specifically expressed in embryonic stem cells (ESCs). A role for maintaining pluripotency and self-renewal of ESCs is assigned to Oct4 as a pluripotency marker. Oct4 can also be detected in adult stem cells such as bone marrow-derived mesenchymal stem cells.
View Article and Find Full Text PDFTelocytes (TCs) are a brand-new cell type frequently observed in the interstitial space of many organs (see www.telocytes.com ).
View Article and Find Full Text PDFTelocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC-specific gene profiles on chromosome 1.
View Article and Find Full Text PDFTelocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; www.telocytes.com).
View Article and Find Full Text PDFThe potential of stem cell (SC) therapies for eye diseases is well-recognized. However, the results remain only encouraging as little is known about the mechanisms responsible for eye renewal, regeneration and/or repair. Therefore, it is critical to gain knowledge about the specific tissue environment (niches) where the stem/progenitor cells reside in eye.
View Article and Find Full Text PDFCardiospheres (CSs) are self-assembling multicellular clusters from the cellular outgrowth from cardiac explants cultured in nonadhesive substrates. They contain a core of primitive, proliferating cells, and an outer layer of mesenchymal/stromal cells and differentiating cells that express cardiomyocyte proteins and connexin 43. Because CSs contain both primitive cells and committed progenitors for the three major cell types present in the heart, that is, cardiomyocytes, endothelial cells, and smooth muscle cells, and because they are derived from percutaneous endomyocardial biopsies, they represent an attractive cell source for cardiac regeneration.
View Article and Find Full Text PDFTelocytes (TCs) have been described in various organs and species (www.telocytes.com) as cells with telopodes (Tps) - very long cellular extensions with an alternation of thin segments (podomers) and dilated portions (podoms).
View Article and Find Full Text PDFBackground: Supported by the International Society for Translational Medicine (ISTM), Wenzhou Medical College and the First Affiliated Hospital of Wenzhou Medical College, the International Conference on Translational Medicine (ICTM) was held on October 22-23, 2011 in Wenzhou, China. Nearly 800 registrants attended the meeting, primarily representing institutes and hospitals in Europe, The United States of America, And Asia, and China. The meeting was chaired and organized by Dr.
View Article and Find Full Text PDF