Publications by authors named "Laurentis M"

Adenoviral and mRNA vaccines encoding the viral spike (S) protein have been deployed globally to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Older individuals are particularly vulnerable to severe infection, probably reflecting age-related changes in the immune system, which can also compromise vaccine efficacy. It is nonetheless unclear to what extent different vaccine platforms are impacted by immunosenescence.

View Article and Find Full Text PDF

Background: Neuroinflammation, with altered peripheral proinflammatory cytokine production, plays a major role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), while the role of inflammation in dementia with Lewy bodies (DLB) is less known and the results of different studies are often in disagreement.

Objective: The present study aimed to investigate the levels of TNFα and IL-6 in serum and supernatants, and the related DNA methylation in patients affected by DLB and AD compared to healthy controls (HCs), to clarify the role of epigenetic mechanisms of DNA promoter methylation on of pro-inflammatory cytokines overproduction.

Methods: Twenty-one patients with DLB and fourteen with AD were frequency-matched for age and sex with eleven HCs.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors improve the efficacy of first-line chemotherapy for patients with programmed death-ligand 1 (PD-L1)-positive unresectable locally advanced/metastatic triple-negative breast cancer (aTNBC), but randomised data in rapidly relapsing aTNBC are scarce.

Patients And Methods: IMpassion132 (NCT03371017) enrolled patients with aTNBC relapsing <12 months after last chemotherapy dose (anthracycline and taxane required) or surgery for early TNBC. PD-L1 status was centrally assessed using SP142 before randomisation.

View Article and Find Full Text PDF

The mucosal immune response is recognized to be important in the early control of infection sustained by viruses with mucosal tissues as the primary site of entry and replication, such as SARS-CoV-2. Mucosal IgA has been consistently reported in the mouth and eye of SARS-CoV-2 infected subjects, where it correlated inversely with COVID-19 symptom severity. Yet, there is still scarce information on the comparative ability of the diverse SARS-CoV-2 vaccines to induce local IgA responses at the virus entry site.

View Article and Find Full Text PDF

We describe a proof-of-principle experiment aiming to investigate the inverse-square law of gravitation at the centimeter scale. The sensor is a two-stage torsion pendulum, while actuation is accomplished by a variable liquid mass. The time-varying gravitational force is related to the level of the circulating fluid in one or two containers at a short distance from the test mass, with all moving mechanical parts positioned at a large distance.

View Article and Find Full Text PDF

The Galactic Center (GC) of the Milky Way, thanks to its proximity, allows to perform astronomical observations that investigate physical phenomena at the edge of astrophysics and fundamental physics. As such, it offers a unique laboratory to probe gravity, where one can not only test the basic predictions of general relativity (GR), but is also able to falsify theories that, over time, have been proposed to modify or extend GR; to test different paradigms of dark matter; and to place constraints on putative models that have been formulated as alternatives to the standard black hole paradigm in GR. In this review we provide a general overview of the history of observations of the GC, emphasizing the importance, in particular on the smallest-observable scales, that they had in opening a new avenue to improve our understanding of the underlying theory of gravity in the surrounding of a supermassive compact object.

View Article and Find Full Text PDF

In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.

View Article and Find Full Text PDF

Background: Identifying sex-related differences/variables associated with 30 day/1 year mortality in patients with chronic limb-threatening ischemia (CLTI).

Methods: Multicenter/retrospective/observational study. A database was sent to all the Italian vascular surgeries to collect all the patients operated on for CLTI in 2019.

View Article and Find Full Text PDF

Triple-negative (TN) metastatic breast cancer (mBC) represents the most challenging scenario withing mBC framework, and it has been only slightly affected by the tremendous advancements in terms of drug availability and survival prolongation we have witnessed in the last years for advanced disease. However, although chemotherapy still represents the mainstay of TN mBC management, in the past years, several novel effective agents have been developed and made available in the clinical practice setting. Within this framework, a panel composed of a scientific board of 17 internationally recognized breast oncologists and 42 oncologists working within local spoke centers, addressed 26 high-priority statements, including grey areas, regarding the management of TN mBC.

View Article and Find Full Text PDF

Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF

Background: To investigate the effects of the COVID-19 lockdowns on the vasculopathic population. Methods: The Divisions of Vascular Surgery of the southern Italian peninsula joined this multicenter retrospective study. Each received a 13-point questionnaire investigating the hospitalization rate of vascular patients in the first 11 months of the COVID-19 pandemic and in the preceding 11 months.

View Article and Find Full Text PDF

In the last few decades, much effort has been made for the production of squeezed vacuum states in order to reduce quantum noise in the audio-frequency band. This technique has been implemented in all running gravitational-wave interferometric detectors and helped to improve their sensitivity. While the detectors are acquiring data for astrophysical observations, they must be kept in the operating condition, also called "science mode," that is, a state that requires the highest possible duty-cycle for all the instrumental parts and controls.

View Article and Find Full Text PDF

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection.

View Article and Find Full Text PDF

The expansion of coronavirus disease 2019 (COVID-19) prompted measures of disease containment by the Italian government with a national lockdown on March 9, 2020. The purpose of this study is to evaluate the rate of hospitalization and mode of in-hospital treatment of patients with chronic limb-threatening ischemia (CLTI) before and during lockdown in the Campania region of Italy. The study population includes all patients with CLTI hospitalized in Campania over a 10-week period: 5 weeks before and 5 weeks during lockdown ( = 453).

View Article and Find Full Text PDF

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements.

View Article and Find Full Text PDF

The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector.

View Article and Find Full Text PDF

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.

View Article and Find Full Text PDF
Article Synopsis
  • On May 21, 2019, Advanced LIGO and Virgo detected a significant gravitational-wave signal known as GW190521, indicating a high probability event with a low chance of false alarms.
  • The signal suggests it resulted from the merger of two black holes, one around 85 solar masses and the other about 66 solar masses, with the primary black hole likely being an intermediate mass black hole.
  • The source of the merger is estimated to be about 5.3 billion light-years away, and the rate of similar black hole mergers is estimated to be about 0.13 mergers per billion cubic parsecs per year.
View Article and Find Full Text PDF

Background: Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors + endocrine therapy (ET) prolonged progression-free survival as first- or second-line therapy for hormone receptor-positive (HR+)/HER2-negative metastatic breast cancer prognosis. Given the recent publication of overall survival (OS) data for the 3 CDK4/6-inhibitors, we performed a meta-analysis to identify a more precise and reliable benefit from such treatments in specific clinical subgroups.

Methods: We conducted a systematic literature search to select all available phase II or III randomized clinical trials of CDK4/6-inhibitors + ET reporting OS data in first- or second-line therapy of HR+/HER2-negative pre- or postmenopausal metastatic breast cancer.

View Article and Find Full Text PDF

Whether, how, and which cognitive factors modulate the development of secondary hypersensitivity/hyperalgesia after central sensitization is not fully understood. Here, we tested, in 3 subsequent experiments, whether being engaged in non-pain-related cognitive demanding tasks: (1) lessens the amount of hypersensitivity developed after an experimental procedure sensitizing nociceptive pathways; and (2) modulates cortical responses to somatosensory stimuli (measured by electroencephalography, EEG). In the first experiment, we validated a novel model in humans using low-frequency stimulation of the skin and demonstrated that it was able to successfully induce hypersensitivity to mechanical pinprick stimuli in the area surrounding the sensitized site.

View Article and Find Full Text PDF

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector.

View Article and Find Full Text PDF

Targeted agents have significantly prolonged survival and improved response rates in first- and second-line settings of hormone receptor-positive/HER2-negative metastatic breast cancer. Optimal sequencing of the available options may prolong endocrine sensitivity, slow disease progression and delay the need for chemotherapy. However, the optimal treatment sequence remains unclear and therapeutic decisions are complex.

View Article and Find Full Text PDF

Purpose: Cancer is a leading cause of mortality worldwide. Its incidence is still increasing, particularly in developing countries. Recent progresses further strengthen the differences between low/middle and high-income countries.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the existence of subsolar mass ultracompact objects by analyzing data from Advanced LIGO's second observing run and includes the impact of spin on gravitational waves.
  • No suitable gravitational-wave candidates were found for binaries with at least one component between 0.2 and 1.0 solar masses, leading to significant constraints on their binary merger rates.
  • The findings suggest that such ultracompact objects likely do not form through conventional stellar evolution, and they outline how these constraints on merger rates can be applied to different black hole population models that predict subsolar mass binaries.
View Article and Find Full Text PDF