Publications by authors named "Laurent Vuillon"

Describing protein dynamical networks through amino acid contacts is a powerful way to analyze complex biomolecular systems. However, due to the size of the systems, identifying the relevant features of protein-weighted graphs can be a difficult task. To address this issue, we present the connected component analysis (CCA) approach that allows for fast, robust, and unbiased analysis of dynamical perturbation contact networks (DPCNs).

View Article and Find Full Text PDF

Trophic networks describe interactions between species at a given location and time. Due to environmental changes, anthropogenic perturbations or sampling effects, trophic networks may vary in space and time. The collection of network time series or networks in different sites thus constitutes a metanetwork.

View Article and Find Full Text PDF

Biomolecular condensates play numerous roles in cells by selectively concentrating client proteins while excluding others. These functions are likely to be sensitive to the spatial organization of the scaffold proteins forming the condensate. We use coarse-grained molecular simulations to show that model intrinsically-disordered proteins phase separate into a heterogeneous, structured fluid characterized by a well-defined length scale.

View Article and Find Full Text PDF

Emerging SARS-CoV-2 variants raise concerns about our ability to withstand the Covid-19 pandemic, and therefore, understanding mechanistic differences of those variants is crucial. In this study, we investigate disparities between the SARS-CoV-2 wild type and five variants that emerged in late 2020, focusing on the structure and dynamics of the spike protein interface with the human angiotensin-converting enzyme 2 (ACE2) receptor, by using crystallographic structures and extended analysis of microsecond molecular dynamics simulations. Dihedral angle principal component analysis (PCA) showed the strong similarities in the spike receptor binding domain (RBD) dynamics of the Alpha, Beta, Gamma, and Delta variants, in contrast with those of WT and Epsilon.

View Article and Find Full Text PDF

Adenosine monophosphate-activated protein kinase (AMPK) is a key energy sensor regulating the cell metabolism in response to energy supply and demand. The evolutionary adaptation of AMPK to different tissues is accomplished through the expression of distinct isoforms that can form up to 12 heterotrimeric complexes, which exhibit notable differences in the sensitivity to direct activators. To comprehend the molecular factors of the activation mechanism of AMPK, we have assessed the changes in the structural and dynamical properties of β1- and β2-containing AMPK complexes formed upon binding to the pan-activator PF-739.

View Article and Find Full Text PDF

Proteins fulfill complex and diverse biological functions through the controlled atomic motions of their structures (functional dynamics). The protein composition is given by its amino-acid sequence, which was assumed to encode the function. However, the discovery of functional sequence variants proved that the functional encoding does not come down to the sequence, otherwise a change in the sequence would mean a change of function.

View Article and Find Full Text PDF

In this chapter, we focus on topology measurements of the adjacent amino acid networks for a data set of oligomeric proteins and some of its subnetworks. The aim is to present many mathematical tools in order to understand the structures of proteins implicitly coded in such networks and subnetworks. We mainly investigate four important networks by computing the number of connected components, the degree distribution, and assortativity measures.

View Article and Find Full Text PDF

Elucidation of the allosteric pathways in proteins is a computational challenge that strongly benefits from combination of atomistic molecular dynamics (MD) simulations and coarse-grained analysis of the complex dynamical network of chemical interactions based on graph theory. Here, we introduce and assess the performances of the dynamical perturbation network analysis of allosteric pathways in a prototypical V-type allosteric enzyme. Dynamical atomic contacts obtained from MD simulations are used to weight the allosteric protein graph, which involves an extended network of contacts perturbed by the effector binding in the allosteric site.

View Article and Find Full Text PDF

A disease has distinct genetic and molecular hallmarks such as sequence variants that are likely to produce the alternative protein structures accountable for individual responses to drugs and disease development. Thus, to set up customized therapies, the structural influences of amino acids on one another need to be tracked down. Using network-based models and classical analysis of amino acid and atomic packing in protein structures, the influence of first shell neighbors on the structural fate of a position upon mutation, is revisited.

View Article and Find Full Text PDF

Proteins possess qualities of robustness and adaptability to perturbations such as mutations, but occasionally fail to withstand them, resulting in loss of function. Herein, the structural impact of mutations is investigated independently of the functional impact. Primarily, we aim at understanding the mechanisms of structural robustness pre-requisite for functional integrity.

View Article and Find Full Text PDF

To fulfill the biological activities in living organisms, proteins are endowed with dynamics, robustness and adaptability. The three properties co-exist because they allow global changes in structure to arise from local perturbations (dynamics). Robustness refers to the ability of the protein to incur such changes without suffering loss of function; adaptability is the emergence of a new biological activity.

View Article and Find Full Text PDF

Altogether few protein oligomers undergo a conformational transition to a state that impairs their function and leads to diseases. But when it happens, the consequences are not harmless and the so-called conformational diseases pose serious public health problems. Notorious examples are the Alzheimer's disease and some cancers associated with a conformational change of the amyloid precursor protein (APP) and of the p53 tumor suppressor, respectively.

View Article and Find Full Text PDF

Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stœchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks.

View Article and Find Full Text PDF