Spin-orbit torques (SOTs) have opened a novel way to manipulate the magnetization using in-plane current, with a great potential for the development of fast and low power information technologies. It has been recently shown that two-dimensional electron gases (2DEGs) appearing at oxide interfaces provide a highly efficient spin-to-charge current interconversion. The ability to manipulate 2DEGs using gate voltages could offer a degree of freedom lacking in the classical ferromagnetic/spin Hall effect bilayers for spin-orbitronics, in which the sign and amplitude of SOTs at a given current are fixed by the stack structure.
View Article and Find Full Text PDFSpin-orbit effects appearing in topological insulators (TI) and at Rashba interfaces are currently revolutionizing how we can manipulate spins and have led to several newly discovered effects, from spin-charge interconversion and spin-orbit torques to novel magnetoresistance phenomena. In particular, a puzzling magnetoresistance has been evidenced as bilinear in electric and magnetic fields. Here, we report the observation of bilinear magnetoresistance (BMR) in strained HgTe, a prototypical TI.
View Article and Find Full Text PDFWe report on the experimental evidence of magnetic helicoidal dichroism, observed in the interaction of an extreme ultraviolet vortex beam carrying orbital angular momentum with a magnetic vortex. Numerical simulations based on classical electromagnetic theory show that this dichroism is based on the interference of light modes with different orbital angular momenta, which are populated after the interaction between light and the magnetic topology. This observation gives insight into the interplay between orbital angular momentum and magnetism and sets the framework for the development of new analytical tools to investigate ultrafast magnetization dynamics.
View Article and Find Full Text PDFOxide interfaces exhibit a broad range of physical effects stemming from broken inversion symmetry. In particular, they can display non-reciprocal phenomena when time reversal symmetry is also broken, e.g.
View Article and Find Full Text PDFThis paper reports the first experimental demonstration of a new concept of double magnetic tunnel junctions comprising a magnetically switchable assistance layer. These double junctions are used as memory cells in spin transfer torque magnetic random access memory (STT-MRAM) devices. Their working principle, fabrication and electrical characterization are described and their performances are compared to those of reference devices without an assistance layer.
View Article and Find Full Text PDFMultiferroics offer an elegant means to implement voltage control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nanomagnonics is expected to eventually lead to the large-scale integration of magnonic devices.
View Article and Find Full Text PDFSpin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT-driven DW motion in ferrimagnetic manganese nickel nitride (MnNiN) films, in which magnetization and angular momentum compensation can be obtained by the fine adjustment of the Ni content.
View Article and Find Full Text PDFLarge spin Hall angles have been observed in 3d ferromagnets, but their origin, and especially their link with the ferromagnetic order, remain unclear. Here, we investigate the evolution of the inverse spin Hall effect of Ni_{60}Cu_{40} and Ni_{50}Cu_{50} across their Curie temperatures using spin-pumping experiments. We show that the inverse spin Hall effect in these samples is comparable to that of platinum, and that it is insensitive to the magnetic order.
View Article and Find Full Text PDFAfter 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems needs to be contained. These two factors require the introduction of non-traditional materials and state variables.
View Article and Find Full Text PDFSpintronics entails the generation, transport, manipulation and detection of spin currents, usually in hybrid architectures comprising interfaces whose impact on performance is detrimental. In addition, how spins are generated and detected is generally material specific and determined by the electronic structure. Here, we demonstrate spin current generation, transport and electrical detection, all within a single non-magnetic material system: a SrTiO two-dimensional electron gas (2DEG) with Rashba spin-orbit coupling.
View Article and Find Full Text PDFSpintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that MnN, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. MnN thin films grown epitaxially on SrTiO substrates possess remarkable properties, such as a perpendicular magnetization, a very high extraordinary Hall angle (2%) and smooth domain walls at the millimeter scale.
View Article and Find Full Text PDFWhile spintronics has traditionally relied on ferromagnetic metals as spin generators and detectors, spin-orbitronics exploits the efficient spin-charge interconversion enabled by spin-orbit coupling in non-magnetic systems. Although the Rashba picture of split parabolic bands is often used to interpret such experiments, it fails to explain the largest conversion effects and their relationship with the electronic structure. Here, we demonstrate a very large spin-to-charge conversion effect in an interface-engineered, high-carrier-density SrTiO two-dimensional electron gas and map its gate dependence on the band structure.
View Article and Find Full Text PDFSpin-orbitronics is based on the ability of spin-orbit interactions to achieve the conversion between charge currents and pure spin currents. As the precise evaluation of the conversion efficiency becomes a crucial issue, the need for straightforward ways to observe this conversion has emerged as one of the main challenges in spintronics. Here, we propose a simple device, akin to the ferromagnetic/nonmagnetic bilayers used in most spin-orbit torques experiments, and consisting of a spin Hall effect wire connected to two transverse ferromagnetic electrodes.
View Article and Find Full Text PDFWe have studied the evolution of the spin Hall effect (SHE) in the regime where the material size responsible for the spin accumulation is either smaller or larger than the spin diffusion length. Lateral spin valve structures with Pt insertions were successfully used to measure the spin absorption efficiency as well as the spin accumulation in Pt induced through the spin Hall effect. Under a constant applied current the results show a decrease of the spin accumulation signal is more pronounced as the Pt thickness exceeds the spin diffusion length.
View Article and Find Full Text PDF