Publications by authors named "Laurent U Perrinet"

Article Synopsis
  • The proposed neuromimetic architecture enables constant pattern recognition using an enhanced event-based algorithm called Hierarchy Of Time-Surfaces (HOTS), built from data from a neuromorphic camera.
  • Improvements include homeostatic gain control to boost learning of patterns and a new mathematical model that relates HOTS to Spiking Neural Networks (SNN), transforming it into an online event-driven classifier.
  • Validation on datasets like Poker-DVS, N-MNIST, and DVS Gesture shows that this architecture excels at rapid object recognition through real-time event processing.
View Article and Find Full Text PDF

Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance.

View Article and Find Full Text PDF

The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity.

View Article and Find Full Text PDF

Our daily endeavors occur in a complex visual environment, whose intrinsic variability challenges the way we integrate information to make decisions. By processing myriads of parallel sensory inputs, our brain is theoretically able to compute the variance of its environment, a cue known to guide our behavior. Yet, the neurobiological and computational basis of such variance computations are still poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Humans are naturally skilled at quickly categorizing images, especially when identifying animals, while deep learning algorithms using convolutional neural networks (CNNs) have recently surpassed human accuracy in specific visual tasks.
  • Despite the high accuracy of CNNs, they struggle with generalization, such as recognizing objects after image rotations, making biological visual systems more adaptable for broader tasks.
  • The study retrained the VGG 16 CNN for two ecologically relevant tasks (detecting animals or artifacts) and showed it could achieve human-like performance, demonstrating that fewer layers in CNNs can still yield strong results, which could inform both artificial intelligence designs and psychophysical research.
View Article and Find Full Text PDF

Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks.

View Article and Find Full Text PDF

Neurons in the primary visual cortex are selective to orientation with various degrees of selectivity to the spatial phase, from high selectivity in simple cells to low selectivity in complex cells. Various computational models have suggested a possible link between the presence of phase invariant cells and the existence of orientation maps in higher mammals' V1. These models, however, do not explain the emergence of complex cells in animals that do not show orientation maps.

View Article and Find Full Text PDF

In human and non-human primates, reflexive tracking eye movements can be initiated at very short latency in response to a rapid shift of the image. Previous studies in humans have shown that only a part of the central visual field is optimal for driving ocular following responses. Herein, we have investigated spatial summation of motion information across a wide range of spatial frequencies and speeds of drifting gratings by recording short-latency ocular following responses in macaque monkeys.

View Article and Find Full Text PDF

Horizontal connections in the primary visual cortex of carnivores, ungulates and primates organize on a near-regular lattice. Given the similar length scale for the regularity found in cortical orientation maps, the currently accepted theoretical standpoint is that these maps are underpinned by a like-to-like connectivity rule: horizontal axons connect preferentially to neurons with similar preferred orientation. However, there is reason to doubt the rule's explanatory power, since a growing number of quantitative studies show that the like-to-like connectivity preference and bias mostly observed at short-range scale, are highly variable on a neuron-to-neuron level and depend on the origin of the presynaptic neuron.

View Article and Find Full Text PDF

We develop a visuomotor model that implements visual search as a focal accuracy-seeking policy, with the target's position and category drawn independently from a common generative process. Consistently with the anatomical separation between the ventral versus dorsal pathways, the model is composed of two pathways that respectively infer what to see and where to look. The "What" network is a classical deep learning classifier that only processes a small region around the center of fixation, providing a "foveal" accuracy.

View Article and Find Full Text PDF

Animal behavior constantly adapts to changes, for example when the statistical properties of the environment change unexpectedly. For an agent that interacts with this volatile setting, it is important to react accurately and as quickly as possible. It has already been shown that when a random sequence of motion ramps of a visual target is biased to one direction (e.

View Article and Find Full Text PDF

The formation of structure in the visual system, that is, of the connections between cells within neural populations, is by and large an unsupervised learning process. In the primary visual cortex of mammals, for example, one can observe during development the formation of cells selective to localized, oriented features, which results in the development of a representation in area V1 of images' edges. This can be modeled using a sparse Hebbian learning algorithms which alternate a coding step to encode the information with a learning step to find the proper encoder.

View Article and Find Full Text PDF

Motion detection represents one of the critical tasks of the visual system and has motivated a large body of research. However, it remains unclear precisely why the response of retinal ganglion cells (RGCs) to simple artificial stimuli does not predict their response to complex, naturalistic stimuli. To explore this topic, we use Motion Clouds (MC), which are synthetic textures that preserve properties of natural images and are merely parameterized, in particular by modulating the spatiotemporal spectrum complexity of the stimulus by adjusting the frequency bandwidths.

View Article and Find Full Text PDF

When predictive information about target motion is available, anticipatory smooth pursuit eye movements (aSPEM) are consistently generated before target appearance, thereby reducing the typical sensorimotor delay between target motion onset and foveation. By manipulating the probability for target motion direction, we were able to bias the direction and mean velocity of aSPEM. This suggests that motion-direction expectancy has a strong effect on the initiation of anticipatory movements.

View Article and Find Full Text PDF

A common practice to account for psychophysical biases in vision is to frame them as consequences of a dynamic process relying on optimal inference with respect to a generative model. The study presented here details the complete formulation of such a generative model intended to probe visual motion perception with a dynamic texture model. It is derived in a set of axiomatic steps constrained by biological plausibility.

View Article and Find Full Text PDF

Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object's motion but it is still unclear how these two representations interact.

View Article and Find Full Text PDF
Article Synopsis
  • - Neurons in the primary visual cortex respond wildly to traditional stimuli like drifting bars, but show more efficient, sparse spikes when exposed to natural scenes.
  • - The study used a model of higher mammals' visual systems to explore how push-pull receptive field organization and fast synaptic depression reshape responses in the primary visual cortex.
  • - Findings indicate that the reliable and sparse spiking during natural vision isn't just due to better sensory input but results from the interplay of fast synaptic depression and effective feed-forward inhibition in the thalamo-cortical pathway.
View Article and Find Full Text PDF

The repeated presentation of an identical visual stimulus in the receptive field of a neuron may evoke different spiking patterns at each trial. Probabilistic methods are essential to understand the functional role of this variance within the neural activity. In that case, a Poisson process is the most common model of trial-to-trial variability.

View Article and Find Full Text PDF

Making a judgment about the semantic category of a visual scene, such as whether it contains an animal, is typically assumed to involve high-level associative brain areas. Previous explanations require progressively analyzing the scene hierarchically at increasing levels of abstraction, from edge extraction to mid-level object recognition and then object categorization. Here we show that the statistics of edge co-occurrences alone are sufficient to perform a rough yet robust (translation, scale, and rotation invariant) scene categorization.

View Article and Find Full Text PDF

This paper considers the problem of sensorimotor delays in the optimal control of (smooth) eye movements under uncertainty. Specifically, we consider delays in the visuo-oculomotor loop and their implications for active inference. Active inference uses a generalisation of Kalman filtering to provide Bayes optimal estimates of hidden states and action in generalised coordinates of motion.

View Article and Find Full Text PDF

Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons inspired by the architecture of retinotopic cortical areas that assumes predictive coding is implemented through network connectivity, namely in the connection delays and in selectiveness for the tuning properties of source and target cells.

View Article and Find Full Text PDF

During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object.

View Article and Find Full Text PDF

This paper introduces a model of oculomotor control during the smooth pursuit of occluded visual targets. This model is based upon active inference, in which subjects try to minimise their (proprioceptive) prediction error based upon posterior beliefs about the hidden causes of their (exteroceptive) sensory input. Our model appeals to a single principle--the minimisation of variational free energy--to provide Bayes optimal solutions to the smooth pursuit problem.

View Article and Find Full Text PDF

Moving objects generate motion information at different scales, which are processed in the visual system with a bank of spatiotemporal frequency channels. It is not known how the brain pools this information to reconstruct object speed and whether this pooling is generic or adaptive; that is, dependent on the behavioral task. We used rich textured motion stimuli of varying bandwidths to decipher how the human visual motion system computes object speed in different behavioral contexts.

View Article and Find Full Text PDF

In low-level sensory systems, it is still unclear how the noisy information collected locally by neurons may give rise to a coherent global percept. This is well demonstrated for the detection of motion in the aperture problem: as luminance of an elongated line is symmetrical along its axis, tangential velocity is ambiguous when measured locally. Here, we develop the hypothesis that motion-based predictive coding is sufficient to infer global motion.

View Article and Find Full Text PDF