The Syrian Cardiomyopathic Hamster (BIO-14.6/53.58 strains) model of cardiac failure, resulting from naturally occurring deletion at the SGCD (delta-sarcoglycan) locus, displays widespread disturbances in catecholamine metabolism.
View Article and Find Full Text PDFHum Mol Genet
September 2013
Hypertension is a common hereditary syndrome with unclear pathogenesis. Chromogranin A (Chga), which catalyzes formation and cargo storage of regulated secretory granules in neuroendocrine cells, contributes to blood pressure homeostasis centrally and peripherally. Elevated Chga occurs in spontaneously hypertensive rat (SHR) adrenal glands and plasma, but central expression is unexplored.
View Article and Find Full Text PDFSecretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the 'human' dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma.
View Article and Find Full Text PDFProteases are required for processing precursors into active neuropeptides that function as neurotransmitters for cell-cell communication. This study demonstrates the novel function of human cathepsin V protease for producing the neuropeptides enkephalin and neuropeptide Y (NPY). Cathepsin V is a human-specific cysteine protease gene.
View Article and Find Full Text PDFPituitary adenylyl cyclase activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) augment the biosynthesis of tyrosine hydroxylase (TH). We tested whether secretin belonging to the glucagon/PACAP/VIP superfamily would increase transcription of the tyrosine hydroxylase (Th) gene and modulate catecholamine secretion. Secretin activated transcription of the endogenous Th gene and its transfected promoter (EC(50) ∼4.
View Article and Find Full Text PDFBackground: The catecholamine release-inhibitor catestatin and its precursor chromogranin A (CHGA) may constitute "intermediate phenotypes" in the analysis of genetic risk for cardiovascular disease such as hypertension. Previously, the vacuolar H(+)-ATPase subunit gene ATP6V0A1 was found within the confidence interval for linkage with catestatin secretion in a genome-wide study, and its 3'-UTR polymorphism T+3246C (rs938671) was associated with both catestatin processing from CHGA and population blood pressure. We explored the molecular mechanism of this effect by experiments with transfected chimeric photoproteins in chromaffin cells.
View Article and Find Full Text PDFNeuropeptides are required for cell-cell communication in the regulation of physiological and pathological processes. While selected neuropeptides of known biological activities have been studied, global analyses of the endogenous profile of human peptide products derived from prohormones by proteolytic processing in vivo are largely unknown. Therefore, this study utilized the global, unbiased approach of mass spectrometry-based neuropeptidomics to define peptide profiles in secretory vesicles, isolated from human adrenal medullary pheochromocytoma of the sympathetic nervous system.
View Article and Find Full Text PDFThe catecholamine biosynthetic pathway consists of several enzymatic steps in series, beginning with the amino acids phenylalanine and tyrosine, and eventuating in the catecholamines norepinephrine (noradrenaline) and epinephrine (adrenaline). Since the enzyme tyrosine hydroxylase (TH; tyrosine 3-mono-oxygenase; EC 1.14.
View Article and Find Full Text PDFStress mobilizes elements from the neuroendocrine system to modulate immune responses. Cholinergic stimulation via nicotinic receptor (nAchR) is a major neuroendocrine signaling axis associated with the stress response whose specific effects on the immune system are unknown. Here, we show that nAchR activation by topical agonist application or deletion of the nAChR antagonist catestatin (Chga(-/-)) reduced antimicrobial peptide (AMP) activity in skin extracts and increased susceptibility to methicillin-resistant Staphylococcus aureus and Group A Streptococcus infections.
View Article and Find Full Text PDFObjectives: The purpose of this study is to understand whether naturally occurring genetic variation in the promoter of chromogranin B (CHGB), a major constituent of catecholamine storage vesicles, is functional and confers risk for cardiovascular disease.
Background: CHGB plays a necessary (catalytic) role in catecholamine storage vesicle biogenesis. Previously, we found that genetic variation at CHGB influenced autonomic function, with association maximal toward the 5' region.
Background: Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Common genetic variation at the human TH promoter predicts alterations in autonomic activity and blood pressure, but how such variation influences human traits and, specifically, whether such variation affects transcription are not yet known.
Methods And Results: Pairwise linkage disequilibrium across the TH locus indicated that common promoter variants (C-824T, G-801C, A-581G, and G-494A) were located in a single 5' linkage disequilibrium block in white, black, Hispanic, and Asian populations.
Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones.
View Article and Find Full Text PDFRationale: Hypertension is a complex trait with deranged autonomic control of the circulation. Chromogranin B () is the most abundant core protein in human catecholamine secretory vesicles, playing an important role in their biogenesis. Does common inter-individual variation at the locus contribute to phenotypic variation in CHGB and catecholamine secretion, autonomic stability of the circulation, or blood pressure in the population?
Methods And Results: To probe inter-individual variability in , we systematically studied polymorphism across the locus by re-sequencing (~6 kbp footprint spanning the promoter, 5 exons, exon/intron borders, UTRs) in n=160 subjects (2n=320 chromosomes) of diverse biogeographic ancestries.
Rationale: Dopamine beta-hydroxylase (DBH) plays an essential role in catecholamine synthesis by converting dopamine into norepinephrine. Here we systematically investigated DBH polymorphisms associated with enzymatic activity as well as autonomic and blood pressure (BP)/disease phenotypes in vivo.
Methods And Results: Seventy genetic variants were discovered at the locus; across ethnicities, much of the promoter was spanned by a 5' haplotype block, with a larger block spanning the promoter in whites than blacks.
Nicotinic acetylcholine receptors (nAChRs) are combinations of subunits arranged as pentamers encircling a central cation channel. At least nine alpha and four beta subunits are expressed in the central and peripheral nervous systems; their presence in autonomic ganglia, the adrenal medulla, and central nervous system, with accompanying responses elicited by nicotinic agonists, point to their involvement in cardiovascular homeostasis. nAChRs formed by alpha3, alpha5, and beta4 subunits may regulate blood pressure (BP) by mediating release of catestatin, the endogenous nicotinic antagonist fragment of chromogranin A (CHGA) and potent inhibitor of catecholamine secretion.
View Article and Find Full Text PDFChromogranin A (CHGA), a protein released from secretory granules of chromaffin cells and sympathetic nerves, triggers endothelin-1 release from endothelial cells. CHGA polymorphisms associate with an increased risk for ESRD, but whether altered CHGA-endothelium interactions may explain this association is unknown. Here, CHGA led to the release of endothelin-1 and Weibel-Palade body exocytosis in cultured human umbilical vein endothelial cells.
View Article and Find Full Text PDFChromogranin A (CgA), the major soluble protein in chromaffin granules, is proteolytically processed to generate biologically active peptides including the catecholamine release inhibitory peptide catestatin. Here we sought to determine whether cysteine protease cathepsin L (CTSL), a novel enzyme for proteolytic processing of neuropeptides, acts like the well-established serine proteases [prohormone convertase (PC)1/3 or PC2] to generate catestatin by proteolytic processing of CgA. We found that endogenous CTSL colocalizes with CgA in the secretory vesicles of primary rat chromaffin cells.
View Article and Find Full Text PDFTyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis. Does common genetic variation at human TH alter autonomic activity and predispose to cardiovascular disease? We undertook systematic polymorphism discovery at the TH locus, and then tested variants for contributions to sympathetic function and blood pressure. We resequenced 80 ethnically diverse individuals across the TH locus.
View Article and Find Full Text PDFObjectives: We aimed to determine whether the common variation at the chromogranin A (CHGA) locus increases susceptibility to hypertension.
Background: CHGA regulates catecholamine storage and release. Previously we systematically identified genetic variants across CHGA.
In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells.
View Article and Find Full Text PDFBackground: Chromogranin A (CHGA) triggers catecholamine secretory granule biogenesis, and its catestatin fragment inhibits catecholamine release. We approached catestatin heritability using twin pairs, coupled with genome-wide linkage, in a series of twin and sibling pairs from 2 continents.
Methods And Results: Hypertensive patients had elevated CHGA coupled with reduction in catestatin, suggesting diminished conversion of precursor to catestatin.
Secretion of proteins and peptides from eukaryotic cells takes place by both constitutive and regulated pathways. Regulated secretion may involve interplay of proteins that are currently unknown. Recent studies suggest an important role of chromogranin A (CHGA) in the regulated secretory pathway in neuroendocrine cells, but the mechanism by which CHGA enters the regulated pathway, or even triggers the formation of the pathway, remains unclear.
View Article and Find Full Text PDFSecretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells.
View Article and Find Full Text PDFThe catecholamine-secreting PC12 cell line derived from the rat adrenal medulla has long been considered a model system for neurosecretion and neuronal differentiation. PC12 cells contain a large number of secretory granules (otherwise known as large dense-core vesicles) for storage of small molecules, processing enzymes, neuropeptides, and peptide hormones. Secretory granule exocytosis in PC12 cells is tightly regulated by calcium and occurs in response to a secretagogue.
View Article and Find Full Text PDFEpithelia establish a microbial barrier against infection through the production of antimicrobial peptides (AMPs). In this study, we investigated whether catestatin (Cst), a peptide derived from the neuroendocrine protein chromogranin A (CHGA), is a functional AMP and is present in the epidermis. We show that Cst is antimicrobial against relevant skin microbes, including gram-positive and gram-negative bacteria, yeast, and fungi.
View Article and Find Full Text PDF