We reported a new strategy to enhance the sensing performances of a commercial microcantilever with optical readout in dynamic mode for the vapor detection of organophosphorus compounds (OPs). In order to increase significantly the surface area accessible to the molecules in the vapor phase, we nanostructured both sides of the microcantilever with ordered, open and vertically oriented amorphous titanium dioxide nanotubes (TiO2-NTs) in one step by an anodization method. However, due to the aggressive conditions of anodization synthesis it remains a real challenge to nanostructure both sides of the microcantilever.
View Article and Find Full Text PDFMicrocantilevers are really promising sensitive sensors despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with copper oxide (CuO) nanorods. The synthesis of the nanostructure consists of the oxidation of a copper layer deposited beforehand on the surface of the sample.
View Article and Find Full Text PDFCantilevers are really promising sensitive sensors despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with zinc oxide (ZnO) nanorods or nanotubes having a diameter of approximately 100 nm and a length of 1 µm. The nanostructure growth was first optimized on a silicon wafer and then transferred to the cantilevers.
View Article and Find Full Text PDFSelf-controlled active oscillating microcantilevers with a piezoresistive readout are very promising sensitive sensors, despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with copper hydroxide (Cu(OH)₂) or with copper oxide (CuO) nanorods. The Cu(OH)₂ rods were grown, on a homogeneous copper layer previously evaporated on the top of the cantilever.
View Article and Find Full Text PDFSmart detection systems for explosive sensors are designed both to detect explosives in the air at trace level and identify the threat for a specific response. Following this need we have succeeded in using microthermal analysis to sensitively identify and discriminate between RDX and PETN explosive vapors at trace level. Once the explosive vapor is trapped in a porous material, heating the material at a fast rate of 3000 K/s up to 350 °C will result in a thermal pattern specifically corresponding to the explosive and its interaction with the porous material.
View Article and Find Full Text PDFA novel zinc hydroxy acetate hydrogen carbonate Zn5(OH)8.2(CH3COO)(HCO3)0.8·1.
View Article and Find Full Text PDFEscherichia coli abatement was studied in liquid phase under visible light in the presence of two commercial titania photocatalysts, and of Fe- and Al-doped titania samples prepared by high energy ball-milling. The two commercial titania photocatalysts, Aeroxide P25 (Evonik industries) exhibiting both rutile and anatase structures and MPT625 (Ishihara Sangyo Kaisha), a Fe-, Al-, P- and S-doped titania exhibiting only the rutile phase, are active suggesting that neither the structure nor the doping is the driving parameter. Although the MPT625 UV-visible spectrum is shifted towards the visible domain with respect to the P25 one, the effect on bacteria is not increased.
View Article and Find Full Text PDF