The last decade has witnessed tremendous progress in the understanding of the mineralocorticoid receptor (MR), its molecular mechanism of action, and its implications for physiology and pathophysiology. After the initial cloning of MR, and identification of its gene structure and promoters, it now appears as a major actor in protein-protein interaction networks. The role of transcriptional coregulators and the determinants of mineralocorticoid selectivity have been elucidated.
View Article and Find Full Text PDFThe mineralocorticoid receptor (MR) integrates hormonal signaling and activates the expression of aldosterone target genes, which control various physiological processes. In recent years, evidence has been provided for an important role of MR not only in the regulation of sodium and water homeostasis but also in cardiovascular function, neuronal fate, and adipocyte differentiation. MR belongs to the steroid receptor family that displays common mechanism of action.
View Article and Find Full Text PDFThe dynamic and coordinated recruitment of coregulators by steroid receptors is critical for specific gene transcriptional activation. To identify new cofactors of the human (h) mineralocorticoid receptor (MR), its highly specific N-terminal domain was used as bait in a yeast two-hybrid approach. We isolated ELL (eleven-nineteen lysine-rich leukemia), a RNA polymerase II elongation factor which, when fused to MLL (mixed lineage leukemia) contributes to the pathogenesis of acute leukemia.
View Article and Find Full Text PDFObjective: Aldosterone binds the mineralocorticoid receptor (MR) and is involved in the regulation of ionic transport, mainly sodium retention. MR is encoded by one single gene transcribed into various messengers that are thought to be translated into a unique 107 kDa protein. The aim of this study was to identify and characterize translation initiation variants of the human MR protein.
View Article and Find Full Text PDFMol Endocrinol
December 2003
Molecular mechanisms underlying mineralocorticoid receptor (MR)-mediated gene expression are not fully understood but seem to largely depend upon interactions with specific coregulators. To identify novel human MR (hMR) molecular partners, yeast two-hybrid screenings performed using the N-terminal domain as bait, allowed us to isolate protein inhibitor of activated signal transducer and activator of transcription (PIAS)1 and PIASxbeta, described as SUMO (small ubiquitin-related modifier) E3-ligases. Specific interaction between PIAS1 and hMR was confirmed by glutathione-S-transferase pull-down experiments and N-terminal subdomains responsible for physical contacts were delineated.
View Article and Find Full Text PDFAdiponectin and resistin, two recently identified adipocyte-specific secretory factors, are able to modulate insulin actions in target tissues. To investigate their expression and hormonal regulation in brown adipocytes, we used the brown adipocyte cell line T37i, which, beside uncoupling protein expression, secretes leptin. Adiponectin and resistin mRNA were detected as a function of cell differentiation.
View Article and Find Full Text PDFThe proopiomelanocortin (POMC) gene is occasionally expressed in nonpituitary tumors leading to Cushing's syndrome. Bronchial carcinoid tumors, one of the most frequent source for ectopic ACTH secretion, often display numerous features of the corticotroph phenotype. To identify new markers of corticotroph differentiation in these tumors, we compared the pattern of gene expression in ACTH-secreting (ACTH+) and nonsecreting (ACTH-) bronchial carcinoids by differential display/RT-PCR.
View Article and Find Full Text PDF