Publications by authors named "Laurent Messonnier"

Transfusion-dependent β-thalassaemia (TDβT) is a genetic disorder characterised by reduced or absent β-globin chain synthesis, resulting in chronic anaemia. Treatment consists of regular blood transfusions and chelation therapy to limit iron overload and its negative effects on organs (e.g.

View Article and Find Full Text PDF

In track cycling, performance in the team pursuit depends on the mechanical and physiological abilities of each member of the team, but also on the choice of racing strategy. Athletes must cover the 4000 m of the race, sharing the effort between them in successive relays. This raises the question of the optimum strategy.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is characterized by central (cardiac) and peripheral vascular dysfunctions, significantly diminishing exercise capacity and quality of life. Although central cardiopulmonary abnormalities in SCD are known to reduce exercise capacity and quality of life; the impact of hemolysis and subsequent cell-free hemoglobin (Hb)-mediated peripheral vascular abnormalities on those outcomes are not fully understood. Despite the recognized benefits of exercise training for cardiovascular health and clinical management in chronic diseases like heart failure, there remains substantial debate on the advisability of regular physical activity for patients with SCD.

View Article and Find Full Text PDF

Although patients with homozygous sickle cell anemia (SCA) carry both significant left atrial (LA) remodeling and an increased risk of stroke, the prevalence of atrial arrhythmia (AA) has never been prospectively evaluated. The aim of this study was to identify the prevalence and predictors of atrial arrhythmia in SCA. From 2018 to 2022, consecutive adult patients with SCA were included in the DREPACOEUR prospective registry and referred to the physiology department for cardiac evaluation, including a 24-hour electrocardiogram monitoring (ECG-Holter).

View Article and Find Full Text PDF

This pilot study focusing on Sickle Cell Anemia (SCA) patients offers a comprehensive and integrative evaluation of respiratory, cardiovascular, hemodynamic, and metabolic variables during exercise. Knowing that diastolic dysfunction is frequent in this population, we hypothesize that a lack of cardiac adaptation through exercise might lead to premature increase in blood lactate concentrations in SCA patients, a potential trigger for acute disease complication. SCA patients were prospectively included in PHYSIO-EXDRE study and underwent a comprehensive stress test with a standardized incremental exercise protocol up to 4 mmol L blood lactate concentration (BL4).

View Article and Find Full Text PDF

Sickle cell disease (SCD) is an hemoglobinopathy resulting in the production of an abnormal Hb (HbS) which can polymerize in deoxygenated conditions, leading to the sickling of red blood cells (RBC). These alterations can decrease the oxygen-carrying capacity leading to impaired function and energetics of skeletal muscle. Any strategy which could reverse the corresponding defects could be of interest.

View Article and Find Full Text PDF

Patients with sickle cell disease (SCD) display lower slope coefficients of the oxygen uptake (V̇O2) versus work rate (W) relationship (delineating an O2 uptake/demand mismatch) and a poor metabolic flexibility. Because endurance training improves the microvascular network and increases the activity of oxidative enzymes, including one involved in lipid oxidation, endurance training might improve the slope coefficient of the V̇O2 versus W curve and the metabolic flexibility of SCD patients. Endurance training may also contribute to improve patients' post-exercise cardiopulmonary and metabolic recovery.

View Article and Find Full Text PDF

Performance in many racing sports depends on the ability of the athletes to produce and maintain the highest possible work i.e., the highest power for the duration of the race.

View Article and Find Full Text PDF

Regular long-lasting physical exercise demands a tremendous amount of metabolic energy [...

View Article and Find Full Text PDF

Lactate is known to play a central role in the link between glycolytic and mitochondrial oxidative metabolism, as well as to serve as a primary gluconeogenic precursor. Blood lactate concentration is sensitive to the metabolic state of tissues and organs as lactate rates of appearance and disposal/disappearance in the circulation rise and fall in response to physical exercise and other metabolic disturbances. The highest lactate flux rates have been measured during moderate intensity exercise in endurance-trained individuals who exhibit muscular and metabolic adaptations lending to superior oxidative capacity.

View Article and Find Full Text PDF

Purpose: To compare linear and curvilinear models describing the force-velocity relationship obtained in lower-limb acyclic extensions, considering experimental data on an unprecedented range of velocity conditions.

Methods: Nine athletes performed lower-limb extensions on a leg-press ergometer, designed to provide a very broad range of force and velocity conditions. Previously inaccessible low inertial and resistive conditions were achieved by performing extensions horizontally and with assistance.

View Article and Find Full Text PDF

Sudden death is 1 of the leading causes of death in adults with sickle cell anemia (SCA) but its etiology remains mostly unknown. Ventricular arrhythmia (VA) carries an increased risk of sudden death; however, its prevalence and determinants in SCA are poorly studied. This study aimed to identify the prevalence and predictors of VA in patients with SCA.

View Article and Find Full Text PDF

Hydroxyurea (HU) is commonly used as a treatment for patients with sickle cell disease (SCD) to enhance fetal hemoglobin production. This increased production is expected to reduce anemia (which depresses oxygen transport) and abnormal Hb content alleviating clinical symptoms such as vaso-occlusive crisis and acute chest syndrome. The effects of HU on skeletal muscle bioenergetics in vivo are still unknown.

View Article and Find Full Text PDF

Hydroxyurea (HU) is a ribonucleotide reductase inhibitor most commonly used as a therapeutic agent in sickle cell disease (SCD) with the aim of reducing the risk of vaso-occlusion and improving oxygen transport to tissues. Previous studies suggest that HU may be even beneficial in mild anemia. However, the corresponding effects on skeletal muscle energetics and function have never been reported in such a mild anemia model.

View Article and Find Full Text PDF

We previously demonstrated that 8 weeks of moderate-intensity endurance training is safe and improves muscle function and characteristics of sickle cell disease (SCD) patients. Here, we investigated skeletal muscle satellite cells (SCs) in SCD patients and their responses to a training program. Fifteen patients followed the training program while 18 control patients maintained a normal lifestyle.

View Article and Find Full Text PDF

In elite oarsmen, the rowing ergometer is a valuable tool for both training and studying rowing performance determinants. However, the energy cost of rowing, often reported as a determinant of performance, has never been described for ergometer rowing. Therefore, this study aimed to characterize the energy cost of ergometer rowing (ECR) in elite oarsmen, its contribution to 2,000 m performance, and its determinants.

View Article and Find Full Text PDF

This study investigated time-courses of physiological and psychological parameters of rowers during the first 1,500 m of a simulated race on a rowing ergometer using different pacing strategies. This provided a picture of the physiological and psychological state of the rowers at the start of the last 500 m of their race. Investigated strategies corresponded either to a degressive (), a progressive (), or a stable () power output over the traveled distance.

View Article and Find Full Text PDF

It remains unclear whether sickle cell trait (SCT) should be considered a risk factor during intense physical activity. By triggering the polymerization-sickling-vaso-occlusion cascade, lactate accumulation-associated acidosis in response to high-intensity exercise is believed to be one of the causes of complications. However, our understanding of lactate metabolism in response to high-intensity exercise in SCT carriers is incomplete.

View Article and Find Full Text PDF

Lactate constitutes the primary gluconeogenic precursor in healthy humans at rest and during low-intensity exercise. Data on the interactions between lactate and glucose metabolisms during recovery after short-duration high-intensity exercise are sparse. The aim of the present study was to describe blood glucose ([glucose]) and lactate ([lactate]) concentration curves during recovery following short-duration high-intensity exercise.

View Article and Find Full Text PDF

Because lactate is an important metabolic intermediate and a signalling molecule between/within cells/organs, it appears essential to be able to describe the kinetics of this central molecule, during and/or after physical exercise. The present study aimed to confront three models and their approaches [Freund and co-workers (F&co), Beneke and co-workers (B&co), and Quittmann and co-workers (Q&co)] to investigate the lactate exchange (γ) and removal (γ) abilities (min) during and/or after exercise. Nine healthy male subjects performed 3- and 6-min easy, moderate, and heavy exercise.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a genetic hemoglobinopathy associated with an impaired oxygen delivery to skeletal muscle that could alter ATP production processes and increase intramuscular acidosis. These alterations have been already reported in the Townes mouse model of SCA but the corresponding changes in humans have not been documented. In the present study, we used 31-phosphorus magnetic resonance spectroscopy to investigate in vivo the metabolic changes induced by a moderate-intensity exercise in twelve SCA patients, eight sickle cell trait (SCT) carriers, and twelve controls women.

View Article and Find Full Text PDF

The immediate postexercise/physical activity period is critical for sickle cell trait (SCT) carriers and disease (SCD) patients. Exercise-related blood acidosis is known to trigger the cascade of HbS deoxygenation and polymerization, leading to red blood cell sickling and subsequent complications. Unfortunately, two facts worsen exercise-related blood acidosis during the initial postexercise period: First, blood lactate and H concentrations continue to increase for several minutes after exercise completion, exacerbating blood acidosis.

View Article and Find Full Text PDF