Sci Bull (Beijing)
November 2024
Bioenergy with carbon capture and storage (BECCS) is considered to be a key technology for removing carbon dioxide from the atmosphere. However, large-scale bioenergy crop cultivation results in land cover changes and activates biophysical effects on climate, with earth's water recycling altered and energy budget re-adjusted. Here, we use a coupled atmosphere-land model with explicit representations of high-transpiration woody (i.
View Article and Find Full Text PDFExtreme climate events constitute a major risk to global food production. Among these, extreme rainfall is often dismissed from historical analyses and future projections, the impacts and mechanisms of which remain poorly understood. Here we used long-term nationwide observations and multi-level rainfall manipulative experiments to explore the magnitude and mechanisms of extreme rainfall impacts on rice yield in China.
View Article and Find Full Text PDFDespite knowledge of the presence of the Tibetan Plateau (TP) in reorganizing large-scale atmospheric circulation, it remains unclear how surface albedo darkening over TP will impact local glaciers and remote Asian monsoon systems. Here, we use a coupled land-atmosphere global climate model and a glacier model to address these questions. Under a high-emission scenario, TP surface albedo darkening will increase local temperature by 0.
View Article and Find Full Text PDFThe seasonal greening of Northern Hemisphere (NH) ecosystems, due to extended growing periods and enhanced photosynthetic activity, could modify near-surface warming by perturbing land-atmosphere energy exchanges, yet this biophysical control on warming seasonality is underexplored. By performing experiments with a coupled land-atmosphere model, here we show that summer greening effectively dampens NH warming by -0.15 ± 0.
View Article and Find Full Text PDFBetween the Last Glacial Maximum and the mid-Holocene, the Mediterranean Sea experienced major hydrological changes. The deposition of the last sapropel, S1, during the Early Holocene is a consequence of these changes. In order to cause anoxia in the Eastern Mediterranean Sea (EMS) bottom water, a long preconditioning period of a few thousand years would need to occur throughout the deglaciation prior to S1.
View Article and Find Full Text PDFCrop pests and diseases (CPDs) are emerging threats to global food security, but trends in the occurrence of pests and diseases remain largely unknown due to the lack of observations for major crop producers. Here, on the basis of a unique historical dataset with more than 5,500 statistical records, we found an increased occurrence of CPDs in every province of China, with the national average rate of CPD occurrence increasing by a factor of four (from 53% to 218%) during 1970-2016. Historical climate change is responsible for more than one-fifth of the observed increment of CPD occurrence (22% ± 17%), ranging from 2% to 79% in different provinces.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2021
This paper presents projections of climate extremes over China under global warming of 1.5, 2, and 3 °C above pre-industrial (1861-1900), based on the latest Coupled Model Intercomparison Project phase 6 (CMIP6) simulations. Results are compared with what produced by the precedent phase of the project, CMIP5.
View Article and Find Full Text PDFBioenergy crop with carbon capture and storage (BECCS) is a key negative emission technology to meet carbon neutrality. However, the biophysical effects of widespread bioenergy crop cultivation on temperature remain unclear. Here, using a coupled atmosphere-land model with an explicit representation of lignocellulosic bioenergy crops, we find that after 50 years of large-scale bioenergy crop cultivation following plausible scenarios, global air temperature decreases by 0.
View Article and Find Full Text PDFAerosols have a dimming and cooling effect and change hydrological regimes, thus affecting carbon fluxes, which are sensitive to climate. Aerosols also scatter sunlight, which increases the fraction of diffuse radiation, increasing photosynthesis. There remains no clear conclusion whether the impact of aerosols on land carbon fluxes is larger through diffuse radiation change than through changes in other climate variables.
View Article and Find Full Text PDFIrrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY).
View Article and Find Full Text PDFAfforestation in China provides carbon sequestration and prevents soil erosion, but its remote impacts on climate in other regions via the coupling of forest energy fluxes with atmospheric circulation are largely unknown. Here, we prescribe inventory-based forest cover change and satellite-observed leaf area index from 1982 to 2011 in a coupled land-atmosphere model to simulate their biophysical climate effects. Both local and global surface air temperatures show a seasonal contrast in response to past vegetation cover expansion over China: a phenomenon we primarily attribute to a variation of seasonality of vegetation greening.
View Article and Find Full Text PDFEarlier vegetation greening under climate change raises evapotranspiration and thus lowers spring soil moisture, yet the extent and magnitude of this water deficit persistence into the following summer remain elusive. We provide observational evidence that increased foliage cover over the Northern Hemisphere, during 1982-2011, triggers an additional soil moisture deficit that is further carried over into summer. Climate model simulations independently support this and attribute the driving process to be larger increases in evapotranspiration than in precipitation.
View Article and Find Full Text PDFThe emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.
View Article and Find Full Text PDFThe 1.5 °C global warming target proposed by the Paris Agreement has raised worldwide attention and inspired numerous studies to assess corresponding climate changes for different regions of the world. But CMIP5 models based on Representative Concentration Pathways (RCP) are 'transient simulations' and cannot reflect the response of climate warming stabilized at 1.
View Article and Find Full Text PDFChina has experienced substantial changes in vegetation cover, with a 10% increase in the leaf area index and an ~41.5 million-hectare increase in forest area since the 1980s. Earlier studies have suggested that increases in leaf area and tree cover have led to a decline in soil moisture and runoff due to increased evapotranspiration (ET), especially in dry regions of China.
View Article and Find Full Text PDFSci Bull (Beijing)
February 2018
To avoid dangerous climate change impact, the Paris Agreement sets out two ambitious goals: to limit the global warming to be well below 2 °C and to pursue effort for the global warming to be below 1.5 °C above the pre-industrial level. As climate change risks may be region-dependent, changes in magnitude and probability of extreme precipitation over China are investigated under those two global warming levels based on simulations from the Coupled Model Inter-Comparison Projects Phase 5.
View Article and Find Full Text PDFKnowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes.
View Article and Find Full Text PDFIn the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming.
View Article and Find Full Text PDFChina has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration.
View Article and Find Full Text PDF