Publications by authors named "Laurent Leport"

The present dataset combines transcriptomic and microscopic analyses to investigate the responses of winter oilseed rape (WOSR, Brassica napus L., cultivar Aviso) to soil drought, with a focus on differences between young and early-senescent old leaves. For microscopy, 36 scans of 1 to 5 leaf cross-sections were acquired from paraffin-embedded leaf disc samples using a scanner with a 40x lens (Pannoramic Confocal, 3DHistech), capturing a large field of view (8-mm-long observed leaf tissue).

View Article and Find Full Text PDF

The data presented in this paper include the original and processed MRI images acquired with a 1.5 T whole-body MRI scanner, describing the growth kinetics, spatialization and appearance of internal defaults of individual tubers of potato plants (Rosanna cultivar of ) grown in pots in a semi-controlled environment and exposed to two water regimes. The 2 conditions were a well-watered regime, in which soil moisture was maintained at 70 % of field capacity, and a variable water deficit regime, in which soil moisture was reduced to 20 % of field capacity several times during tuber growth, followed each time by a few-day period of rehydration to 70 % of field capacity.

View Article and Find Full Text PDF

Climate change is bringing more frequent and intense droughts, reducing overall water availability and adversely affecting crops. There is a need to improve our understanding of the tissular and cellular adaptation mechanisms that are critical for plant water conservation strategies. Here, we have used NMR relaxometry in combination with microscopy and multi-omic analysis to study the effects of progressive soil drought on winter oilseed rape (WOSR, Brassica napus L.

View Article and Find Full Text PDF

Understanding the potato tuber development and effects of drought at key stages of sensitivity on yield is crucial, particularly when considering the increasing incidence of drought due to climate change. So far, few studies addressed the time course of tuber growth in soil, mainly due to difficulties in accessing underground plant organs in a non-destructive manner. This study aims to understand the tuber growth and quality and the complex long-term effects of realistic water stress on potato tuber yield.

View Article and Find Full Text PDF

Background: Characterisation of the structure and water status of leaf tissues is essential to the understanding of leaf hydraulic functioning under optimal and stressed conditions. Magnetic Resonance Imaging is unique in its capacity to access this information in a spatially resolved, non-invasive and non-destructive way. The purpose of this study was to develop an original approach based on transverse relaxation mapping by Magnetic Resonance Imaging for the detection of changes in water status and distribution at cell and tissue levels in Brassica napus leaves during blade development and dehydration.

View Article and Find Full Text PDF

In the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients.

View Article and Find Full Text PDF

Magnetic Resonance Imaging is a powerful non-destructive tool in the study of plant tissues. For potato tubers, it greatly assists the study of tissue defects and tissue evolution during storage. This paper describes the MRI analysis of potato tubers with internal defects in their flesh tissue at eight sampling dates from 14 to 33 weeks after harvest.

View Article and Find Full Text PDF

The potato is one of the most cultivated crops worldwide, providing an important source of food. The quality of potato tubers relates to their size and dry matter composition and to the absence of physiological defects. It depends on the spatial and temporal coordination of growth and metabolic processes in the major tuber tissues: the cortex, flesh and pith.

View Article and Find Full Text PDF

Leaf senescence in source leaves leads to the active degradation of chloroplast components [photosystems, chlorophylls, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)] and plays a key role in the efficient remobilization of nutrients toward sink tissues. However, the progression of leaf senescence can differentially modify the photosynthetic properties of source leaves depending on plant species. In this study, the photosynthetic and respiratory properties of four leaf ranks of oilseed rape describing leaf phenological stages having different sink-source activities were analyzed.

View Article and Find Full Text PDF

Background: Low field NMR has been used to investigate water status in various plant tissues. In plants grown in controlled conditions, the method was shown to be able to monitor leaf development as it could detect slight variations in senescence associated with structural modifications in leaf tissues. The aim of the present study was to demonstrate the potential of NMR to provide robust indicators of the leaf development stage in plants grown in the field, where leaves may develop less evenly due to environmental fluctuations.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examined how moderate nitrogen depletion affects leaf cell and tissue structure, which is important for nitrogen remobilization during senescence, leading to reduced seed yield.
  • * Two genotypes were compared for nitrogen depletion tolerance, with findings suggesting that monitoring leaf structure using NMR could help identify genotypes with better NUE.
View Article and Find Full Text PDF
Article Synopsis
  • Oilseed rape, a major crop, struggles with nitrogen (N) fertilizer efficiency; only about 50% of the N is utilized in seeds, causing pollution concerns due to excess N returned to the soil.
  • Research on two genotypes, Aviso and Oase, revealed that while both allocated N to seeds efficiently, Aviso excelled in remobilizing N from stems and leaves, especially under restricted nitrate supply.
  • The study identified proteolysis as a key mechanism in foliar N remobilization, emphasizing its critical role in seed filling after bolting, which is essential for improving seed yield and oil quality.
View Article and Find Full Text PDF

Oilseed rape, a crop requiring a high level of nitogen (N) fertilizers, is characterized by low N use efficiency. To identify the limiting factors involved in the N use efficiency of winter oilseed rape, the response to low N supply was investigated at the vegetative stage in 10 genotypes by using long-term pulse-chase (15)N labelling and studying the physiological processes of leaf N remobilization. Analysis of growth and components of N use efficiency allowed four profiles to be defined.

View Article and Find Full Text PDF

Winter oilseed rape is characterized by a low N use efficiency related to a weak leaf N remobilization efficiency (NRE) at vegetative stages. By investigating the natural genotypic variability of leaf NRE, our goal was to characterize the relevant physiological traits and the main protease classes associated with an efficient proteolysis and high leaf NRE in response to ample or restricted nitrate supply. The degradation rate of soluble proteins and D1 protein (a thylakoid-bound protein) were correlated to N remobilization, except for the genotype Samouraï which showed a low NRE despite high levels of proteolysis.

View Article and Find Full Text PDF

Six BnaProDH1 and two BnaProDH2 genes were identified in Brassica napus genome. The BnaProDH1 genes are mainly expressed in pollen and roots' organs while BnaProDH2 gene expression is associated with leaf vascular tissues at senescence. Proline dehydrogenase (ProDH) catalyzes the first step in the catabolism of proline.

View Article and Find Full Text PDF

Differential palisade and spongy parenchyma structural changes in oilseed rape leaf were demonstrated. These dismantling processes were linked to early senescence events and associated to remobilization processes. During leaf senescence, an ordered cell dismantling process allows efficient nutrient remobilization.

View Article and Find Full Text PDF

Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants.

View Article and Find Full Text PDF

Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods.

View Article and Find Full Text PDF

Thellungiella salsuginea, a Brassicaceae species closely related to Arabidopsis thaliana, is tolerant to high salinity. The two species were compared under conditions of osmotic stress to assess the relationships between stress tolerance, the metabolome, water homeostasis and growth performance. A broad range of metabolites were analysed by metabolic fingerprinting and profiling, and the results showed that, despite a few notable differences in raffinose and secondary metabolites, the same metabolic pathways were regulated by salt stress in both species.

View Article and Find Full Text PDF

The eco-physiology of salt tolerance, with an emphasis on K(+) nutrition and proline accumulation, was investigated in the halophyte Thellungiella halophila and in both wild type and eskimo-1 mutant of the glycophyte Arabidopsis thaliana, which differ in their proline accumulation capacity. Plants cultivated in inert sand were challenged for 3 weeks with up to 500mM NaCl. Low salinity significantly decreased A.

View Article and Find Full Text PDF

Phosphoenolpyruvate (PEP) carboxylation was measured as dark CO fixation in leaves and roots (in vivo) or as PEP carboxylase (PEPCase) activity in desalted leaf and roof extracts (in vitro) from Pisum sativum L. cv. Kleine Rheinländerin.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session87g4f8kjnthj8r6v40eod1t340pje116): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once