Publications by authors named "Laurent Le Polles"

Exploring magnetic properties at the molecular level is a challenge that has been met by developing many experimental and theoretical solutions, such as polarized neutron diffraction (PND), muon-spin rotation (μ-SR), electron paramagnetic resonance (EPR), SQUID-based magnetometry measurements, and advanced modeling on open-shell systems and relativistic calculations. These methods are powerful tools that shed light on the local magnetic response in specifically designed magnetic materials such as contrast agents, for MRI, molecular magnets, magnetic tags for biological NMR, etc. All of these methods have their advantages and disadvantages.

View Article and Find Full Text PDF

Reactions in water at ambient temperature and pressure between a lanthanide ion and benzene-1,3,5-tricarboxylate (or trimesate) lead to two series of iso-structural coordination polymers. Their general chemical formula is [Ln(tma)(HO)] for the lightest lanthanide ions (Ln = La-Dy except ), while it is [Ln(tma)(HO)·3.5HO] for the heaviest ones (Ho-Lu plus Y).

View Article and Find Full Text PDF

In this paper we undertake a study of the decoupling efficiency of the Multiple-Pulse (MP) scheme, and a rationalization of its parameterization and of the choice of instrumental set up. This decoupling scheme is known to remove the broadening of spin-1/2 spectra I, produced by the heteronuclear scalar interaction with a half-integer quadrupolar nucleus S, without reintroducing heteronuclear dipolar interaction. The resulting resolution enhancement depends on the set-up of the length of the series of pulses and delays of the MP, and some intrinsic material and instrumental parameters.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the dynamics of methanol molecules confined within a flexible metal-organic framework (MOF) known as NH-MIL-53(Al), which undergoes structural changes due to thermal and adsorption processes.
  • Using molecular dynamics simulations, the research reveals how the flexibility of the MOF affects the molecular behavior of methanol, impacting its translational and rotational dynamics.
  • Findings include the observation of anomalous diffusion characteristics in methanol, attributed to the specific interactions with the MOF and the material's ability to change its structure, leading to insights into diffusion mechanisms in porous materials.
View Article and Find Full Text PDF

Isostructural lanthanide-based coordination polymers that are obtained by reactions in water of a lanthanide chloride and the sodium salt of 5-methoxyisophthalate (mip) have the general chemical formula [Ln(mip)(HO)·4HO] with Ln = Nd-Er except Pm plus Y (symbolized by [Ln(mip)]). Some of these homo-lanthanide compounds present very high luminescence brightness. The weak intermetallic energy transfer between lanthanide ions observed in these compounds allows the design of hetero-lanthanide coordination polymers with tunable luminescence properties.

View Article and Find Full Text PDF

Reversible structural transition between the Large (LP) and Narrow Pore (NP) forms (breathing phenomena) of the MIL-53(X, X = Al, Cr, Fe, Ga) Metal Organic Framework (MOF) is probably one of the most amazing physical properties of this class of soft-porous materials. Whereas great attention has been paid to the elucidation of the physical mechanism ruling this reversible transition, the effect of the functionalization on the flexibility has been less explored. Among functionalized MIL-53(Al) materials, the case of NH2-MIL-53(Al) is undoubtedly a very intriguing structural transition rarely observed, and the steadier phase corresponds to the narrow pore form.

View Article and Find Full Text PDF

The structure of the binary chalcohalide glasses TeCl (0.35 ≤ x ≤ 0.65) is considered by combining experimental and theoretical results.

View Article and Find Full Text PDF

Three volatile organic compounds (VOCs), benzene, cyclohexane, and dichloromethane, were adsorbed onto activated carbon fiber cloth. H (magic-angle spinning (MAS) and pulsed field gradient (PFG)) NMR techniques were carried out, and the signals were analyzed in terms of peak surface areas and shifts. These techniques were shown to be very useful for determining (i) the intrinsic quantification of adsorbed molecules (VOCs and/or water) in the porosity of the materials (the adsorption capacities ranged from 0.

View Article and Find Full Text PDF

We report on Pb, Br, N, H, C and H NMR experiments for studying the local order and dynamics in hybrid perovskite lattices. Pb NMR experiments conducted at room temperature on a series of MAPbX compounds (MA = CHNH; X = Cl, Br and I) showed that the isotropic Pb NMR shift is strongly dependent on the nature of the halogen ions. Therefore Pb NMR appears to be a very promising tool for the characterisation of local order in mixed halogen hybrid perovskites.

View Article and Find Full Text PDF

Selenium-rich Ge-Te-Se glasses have been synthesized along the GeSe4-GeTe4 pseudo-composition line and acquired by (77)Se Hahn echo magic-angle spinning NMR. The comparison with the GeSe4 spectrum shows a drastic modification of the typical double-resonance lineshape even at low Te concentrations (<10%). In order to rationalize this feature and to understand the effect of Te on the structure of our glasses, first-principles molecular dynamics simulations and gauge including projector augmented wave NMR parameter calculations have been performed.

View Article and Find Full Text PDF

[Mo6X14](2-) octahedral molybdenum clusters are the main building blocks of a large range of materials. Although (95)Mo nuclear magnetic resonance was proposed to be a powerful tool to characterize their structural and dynamical properties in solution, these measurements have never been complemented by theoretical studies which can limit their interpretation for complex systems. In this Article, we use quantum chemical calculations to evaluate the (95)Mo chemical shift of three clusters: [Mo6Cl14](2-), [Mo6Br14](2-), and [Mo6I14](2-).

View Article and Find Full Text PDF

The molecular composition of 10 Cretaceous and one Eocene ambers from France was analyzed by infrared spectroscopy, solid-state (13)C nuclear magnetic resonance spectroscopy, and thermochemolysis gas chromatography-mass spectrometry. The terpenoids identified in the samples were used as biomarkers for the botanical origin of the resins. The Cretaceous samples, comprising the so-called Alpine, Anjou, Charentese, Provence, Pyrenean, and Vendean ambers, ranged from the Albian-Cenomanian transition to the early Santonian (100 to 85 Ma) and correspond to class Ib resins typical of conifers.

View Article and Find Full Text PDF

For the first time, hexanuclear complexes with general chemical formula [Ln6O(OH)8(NO3)6(H2O)n](2+) with n = 12 for Ln = Sm-Lu and Y and n = 14 for Ln = Pr and Nd were stabilized as nanoaggregates in ethylene glycol (EG). These unprecedented nanoaggregates were structurally characterized by (89)Y and (1)H NMR spectroscopy, UV-vis absorption and luminescence spectroscopies, electrospray ionization mass spectrometry, diffusion ordered spectroscopy, transmission electron microscopy, and dynamic light scattering. These nanoaggregates present a 200 nm mean solvodynamic diameter.

View Article and Find Full Text PDF

Reactions in water between the sodium salt of 4-carboxyphenylboronic acid (Hcpb) and lanthanide ions (Pr-Nd, Sm-Lu, and Y) led to a family of lanthanide-based coordination polymers with general chemical formula {[Ln(cpbOH)(H2O)2](cpb)}∞. Structural characterizations were ensured by single-crystal X-ray diffraction and solid-state NMR spectroscopy ((11)B, (13)C, and (89)Y). This family of compounds constitutes the first example of lanthanide-based coordination polymers involving 4-carboxyphenylboronic acid as ligand.

View Article and Find Full Text PDF

Solid-state (77)Se NMR measurements, first-principles molecular dynamics and DFT calculations of NMR parameters were performed to gain insight into the structure of selenium-rich GexSe(1-x) glasses. We recorded the fully-relaxed NMR spectra on natural abundance and 100% isotopically enriched GeSe4 samples, which led us to reconsider the level of structural heterogeneity in this material. In this paper, we propose an alternative procedure to initialise molecular dynamics runs for the chalcogenide glasses.

View Article and Find Full Text PDF

Reactions in solvothermal conditions between hexanuclear rare earth complexes and H2bdc, where H2bdc symbolizes terephthalic acid, lead to a family of monodimensional coordination polymers in which hexanuclear complexes act as metallic nodes. The hexanuclear cores can be either homometallic with general chemical formula [Ln6O(OH)8(NO3)6](2+) (Ln = Pr-Lu plus Y) or heterometallic with general chemical formula [Ln(6x)Ln'(6-6x)O(OH)8(NO3)6](2+) (Ln and Ln' = Pr-Lu plus Y). Whatever the hexanuclear entity is, the resulting coordination polymer is iso-structural to [Y6O(OH)8(NO3)2(bdc)(Hbdc)2·2NO3·H2bdc]∞, a coordination polymer that we have previously reported.

View Article and Find Full Text PDF

Structural investigations on vanadium phosphates, which are extensively used as catalysts in industry, often resulted in important advances in the understanding of the mechanisms driving the catalytic oxidation of light hydrocarbons. Layer translations in the two lamellar vanadium phosphates α1- and α2-VOPO4 phases identified during the catalysis were investigated by the combination of first-principles calculations, synchrotron X-ray powder diffraction, single-crystal X-ray diffraction and solid-state NMR. This analysis reveals an important feature: the α1-form is the only polymorph of VOPO4 to exhibit layer translations that prevent the formation of infinite VO6 chains.

View Article and Find Full Text PDF

(77)Se NMR parameters for three prototypical crystalline compounds (As2Se3, As4Se4 and As4Se3) have been determined from solid-state NMR spectra in the framework of an investigation concerning AsxSe(1-x) glass structure understanding. Density functional NMR calculations using the gauge including projector augmented wave methodology have been performed on X-ray and optimized crystal structures for a set of selenium-based crystals. These theoretical results have been combined with the experimental data in order to achieve a precise assignment of the spectral lines.

View Article and Find Full Text PDF

The ability of (95)Mo solid-state nuclear magnetic resonance (SSNMR) spectroscopy to probe the atomic and electronic structures of inorganic molybdenum cluster materials has been demonstrated for the first time. Six cluster compounds were studied: MoBr(2), Cs(2)Mo(6)Br(14), (Bu(4)N)(2)Mo(6)Br(14), each containing the octahedral Mo(6)Br(14)(2-) cluster unit, and MoS(2)Cl(3), Mo(3)S(7)Cl(4), and MoSCl that contain metallic dimers, trimers, and tetramers, respectively. To overcome inherent difficulties due to the low sensitivity of (95)Mo SSNMR, both high-magnetic-field spectrometers and the quadrupolar Carr-Purcell Meiboom-Gill sensitivity enhancement pulse sequence under magic-angle-spinning conditions, combined with a hyperbolic-secant pulse were used.

View Article and Find Full Text PDF

The new compounds LiLn(9)Mo(16)O(35) (Ln=La, Ce, Pr, and Nd) were synthesized from stoichiometric mixtures of Li(2)MoO(4), Ln(2)O(3), Pr(6)O(11) or CeO(2), MoO(3), and Mo heated at 1600 °C for 48 h in a molybdenum crucible sealed under a low argon pressure. The crystal structure, determined from a single crystal of the Nd member, showed that the main building block is the Mo(16)O(36) unit, the Mo(16) core of which is totally new and results from the fusion of two bioctahedral Mo(10) clusters. It can also be viewed as a fragment of an infinite twin chain of edge-sharing Mo(6) octahedra.

View Article and Find Full Text PDF

Solid-state (95)Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal (95)Mo NMR experiments. Within a molecular approach, the effects of major computational parameters, i.

View Article and Find Full Text PDF

To efficiently obtain multiple-quantum magic-angle spinning (MQMAS) spectra of the nuclide 45Sc (I=7/2), we have combined several previously suggested techniques to enhance the signal-to-noise ratio and to improve spectral resolution for the test sample, scandium sulphate pentahydrate (ScSPH). Whereas the 45Sc-3QMAS spectrum of ScSPH does not offer sufficient resolution to clearly distinguish between the 3 scandium sites present in the crystal structure, these sites are well-resolved in the 5QMAS spectrum. The loss of sensitivity incurred by using MQMAS with 5Q coherence order is partly compensated for by using fast-amplitude modulated (FAM) sequences to improve the efficiency of both 5Q coherence excitation and conversion.

View Article and Find Full Text PDF

The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation.

View Article and Find Full Text PDF

The ternary reduced molybdenum sulphide Cs(~1)Mo12S14 has been synthesized by solid-state reaction at 1400 degrees C for 96 h in sealed molybdenum crucibles. The compound crystallizes in the trigonal space group P31c with the following lattice parameters: a = 9.9793 (2) A, c = 6.

View Article and Find Full Text PDF

This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information.

View Article and Find Full Text PDF