In this study, we carried out equilibrium molecular dynamics (EMD) simulations of the liquid-liquid (LL) interface between two different Lennard-Jones components with varying miscibility, where we examined the relation between the interfacial tension and the free energy to completely isolate the two liquids using both a mechanical and thermodynamic approach. Using the mechanical approach, we obtained a stress distribution around a quasi-one-dimensional EMD system with a flat LL interface. From the stress distribution, we calculated the LL interfacial tension based on Bakker's equation, which uses the stress anisotropy around the interface, and measured how it varied with miscibility.
View Article and Find Full Text PDFWhen a contact line (CL)-where a liquid-vapor interface meets a substrate-is put into motion, it is well known that the contact angle differs between advancing and receding CLs. Using non-equilibrium molecular dynamics simulations, we reveal another intriguing distinction between advancing and receding CLs: while temperature increases at an advancing CL-as expected from viscous dissipation, we show that temperature can drop at a receding CL. Detailed quantitative analysis based on the macroscopic energy balance around the dynamic CL showed that the internal energy change of the fluid due to the change of the potential field along the pathline out of the solid-liquid interface induced a remarkable temperature drop around the receding CL, in a manner similar to latent heat upon phase changes.
View Article and Find Full Text PDFHeat transfer through the interface between a metallic nanoparticle and an electrolyte solution has great importance in a number of applications, ranging from nanoparticle-based cancer treatments to nanofluids and solar energy conversion devices. However, the impact of the surface charge and dissolved ions on heat transfer has been scarcely explored so far. In this study, we compute the interface thermal conductance between hydrophilic and hydrophobic charged gold nanoparticles immersed in an electrolyte using equilibrium molecular dynamics simulations.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2023
Thermo-osmotic flows, generated at liquid-solid interfaces by thermal gradients, can be used to produce electric currents from waste heat on charged surfaces. The two key parameters controlling the thermo-osmotic current are the surface charge and the interfacial enthalpy excess due to liquid-solid interactions. While it has been shown that the contribution from water to the enthalpy excess can be crucial, how this contribution is affected by surface charge remained to be understood.
View Article and Find Full Text PDFSolid-liquid friction plays a key role in nanofluidic systems. Following the pioneering work of Bocquet and Barrat, who proposed to extract the friction coefficient (FC) from the plateau of the Green-Kubo (GK) integral of the solid-liquid shear force autocorrelation, the so-called plateau problem has been identified when applying the method to finite-sized molecular dynamics simulations, e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2023
Liquid and ionic transport through nanometric structures is central to many phenomena, ranging from cellular exchanges to water resource management or green energy conversion. While pushing down toward molecular scales progressively unveils novel transport behaviors, reaching ultimate confinement in controlled systems remains challenging and has often involved 2D Van der Waals materials. Here, we propose an alternative route which circumvents demanding nanofabrication steps, partially releases material constraints, and offers continuously tunable molecular confinement.
View Article and Find Full Text PDFThe effect of temperature on friction and slip at the liquid-solid interface has attracted attention over the last 20 years, both numerically and experimentally. However, the role of temperature on slip close to the glass transition has been less explored. Here we use molecular dynamics to simulate a bidisperse atomic fluid, which can remain liquid below its melting point (supercooled state), to study the effect of temperature on friction and slip length between the liquid and a smooth apolar wall in a broad range of temperatures.
View Article and Find Full Text PDFUnlike crystalline solids or ideal gases, transport properties remain difficult to describe from a microscopic point of view in liquids, whose dynamics result from complex energetic and entropic contributions at the atomic scale. Two scenarios are generally proposed: one represents the dynamics in a fluid as a series of energy-barrier crossings, leading to Arrhenius-like laws, while the other assumes that atoms rearrange themselves by collisions, as exemplified by the free volume model. To assess the validity of these two views, we computed, using molecular dynamics simulations, the transport properties of the Lennard-Jones fluid and tested to what extent the Arrhenius equation and the free volume model describe the temperature dependence of the viscosity and of the diffusion coefficient at fixed pressure.
View Article and Find Full Text PDFSignificanceFirst-principles calculations, which explicitly account for the electronic structure of matter, can shed light on the molecular structure and dynamics of water in its supercooled state. In this work, we use density functional theory, which relies on a functional to describe electronic exchange and correlations, to evaluate which functional best describes the temperature evolution of bulk water transport coefficients. We also assess the validity of the Stokes-Einstein relation for all the functionals in the temperature range studied, and explore the link between structure and dynamics.
View Article and Find Full Text PDFThermo-osmotic flows - flows generated in micro and nanofluidic systems by thermal gradients - could provide an alternative approach to harvest waste heat. However, such use would require massive thermo-osmotic flows, which are up to now only predicted for special and expensive materials. Thus, there is an urgent need to design affordable nanofluidic systems displaying large thermo-osmotic coefficients.
View Article and Find Full Text PDFNanofluids-dispersions of nanometer-sized particles in a liquid medium-have been proposed for a wide variety of thermal management applications. It is known that a solid-like nanolayer of liquid of typical thicknesses of 0.5-1 nm surrounding the colloidal nanoparticles can act as a thermal bridge between the nanoparticle and the bulk liquid.
View Article and Find Full Text PDFInvestigating the electrokinetic (EK) response in the vicinity of interfaces has regained interest due to the development of new membrane based processes for energy harvesting or soil depollution. However, the case of reactive interfaces, ubiquitous in these processes, remains scarcely explored. Here we experimentally investigate the EK response of a model interface between an aqueous electrolyte and a bulk MgO crystal surface (100), for different pH.
View Article and Find Full Text PDFOsmotic transport in nanoconfined aqueous electrolytes provides alternative venues for water desalination and "blue energy" harvesting. The osmotic response of nanofluidic systems is controlled by the interfacial structure of water and electrolyte solutions in the so-called electrical double layer (EDL), but a molecular-level picture of the EDL is to a large extent still lacking. Particularly, the role of the electronic structure has not been considered in the description of electrolyte/surface interactions.
View Article and Find Full Text PDFNanofluidics is an emerging field offering innovative solutions for energy harvesting and desalination. The efficiency of these applications depends strongly on liquid-solid slip, arising from a favorable ratio between viscosity and interfacial friction. Using molecular dynamics simulations, we show that wall slip increases strongly when water is cooled below its melting point.
View Article and Find Full Text PDFNanofluidic systems show great promise for applications in energy conversion, where their performance can be enhanced by nanoscale liquid-solid slip. However, efficiency is also controlled by surface charge, which is known to reduce slip. Combining molecular dynamics simulations and analytical developments, we show the dramatic impact of surface charge distribution on the slip-charge coupling.
View Article and Find Full Text PDFMolecular dynamics simulations of aqueous electrolytes generally rely on empirical force fields, combining dispersion interactions-described by a truncated Lennard-Jones (LJ) potential-and electrostatic interactions-described by a Coulomb potential computed with a long-range solver. Recently, force fields using rescaled ionic charges [electronic continuum correction (ECC)], possibly complemented with rescaling of LJ parameters [ECC rescaled (ECCR)], have shown promising results in bulk, but their performance at interfaces has been less explored. Here, we started by exploring the impact of the LJ potential truncation on the surface tension of a sodium chloride aqueous solution.
View Article and Find Full Text PDFDespite relevance to water purification and renewable energy conversion membranes, the molecular mechanisms underlying water slip are poorly understood. We disentangle the static and dynamical origin of water slippage on graphene, hBN and MoS2 by means of large-scale ab initio molecular dynamics. Accounting for the role of the electronic structure of the interface is essential to determine that water slips five and eleven times faster on graphene compared to hBN and to MoS2, respectively.
View Article and Find Full Text PDFPhys Rev Lett
September 2019
Nanofluidic systems could in principle be used to produce electricity from waste heat, but current theoretical descriptions predict a rather poor performance as compared to thermoelectric solid materials. Here we investigate the thermoelectric response of NaCl and NaI solutions confined between charged walls, using molecular dynamics simulations. We compute a giant thermoelectric response, 2 orders of magnitude larger than the predictions of standard models.
View Article and Find Full Text PDFMolecular dynamics simulations are a powerful tool to characterize liquid-solid friction. A slab configuration with periodic boundary conditions in the lateral dimensions is commonly used, where the measured friction coefficient could be affected by the finite lateral size of the simulation box. Here we show that for a very wetting liquid close to its melting temperature, strong finite size effects can persist up to large box sizes along the flow direction, typically ∼30 particle diameters.
View Article and Find Full Text PDFFlows in nanofluidic systems are strongly affected by liquid-solid slip, which is quantified by the slip length and by the position where the slip boundary condition applies. Here, we show that the viscosity, slip length, and hydrodynamic wall position (HWP) can be accurately determined from a single molecular dynamics (MD) simulation of a Poiseuille flow, after identifying a relation between the HWP and the wall shear stress in that configuration. From this relation, we deduce that in gravity-driven flows, the HWP identifies with the Gibbs dividing plane of the liquid-vacuum density profile.
View Article and Find Full Text PDFAmong the numerous anomalies of water, the acceleration of dynamics under pressure is particularly puzzling. Whereas the diffusivity anomaly observed in experiments has been reproduced in several computer studies, the parallel viscosity anomaly has received less attention. Here we simulate viscosity and the self-diffusion coefficient of the TIP4P/2005 water model over a broad temperature and pressure range.
View Article and Find Full Text PDFFollowing our recent theoretical prediction of the giant thermo-osmotic response of the water-graphene interface, we explore the practical implementation of waste heat harvesting with carbon-based membranes, focusing on model membranes of carbon nanotubes (CNT). To that aim, we combine molecular dynamics simulations and an analytical model considering the details of hydrodynamics in the membrane and at the tube entrances. The analytical model and the simulation results match quantitatively, highlighting the need to take into account both thermodynamics and hydrodynamics to predict thermo-osmotic flows through membranes.
View Article and Find Full Text PDFThermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics.
View Article and Find Full Text PDFNon-bonded potentials are included in most force fields and therefore widely used in classical molecular dynamics simulations of materials and interfacial phenomena. It is commonplace to truncate these potentials for computational efficiency based on the assumption that errors are negligible for reasonable cutoffs or compensated for by adjusting other interaction parameters. Arising from a metadynamics study of the wetting transition of water on a solid substrate, we find that the influence of the cutoff is unexpectedly strong and can change the character of the wetting transition from continuous to first order by creating artificial metastable wetting states.
View Article and Find Full Text PDF