Important challenges in stem cell research and regenerative medicine are reliable assessment of pluripotency state and purity of differentiated cell populations. Pluripotency and differentiation are regulated and determined by activity of developmental signal transduction pathways (STPs). To date activity of these STPs could not be directly measured on a cell sample.
View Article and Find Full Text PDFCombined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity.
View Article and Find Full Text PDFBackground: The Notch signal transduction pathway is pivotal for various physiological processes, including immune responses, and has been implicated in the pathogenesis of many diseases. The effectiveness of various targeted Notch pathway inhibitors may vary due to variabilities in Notch pathway activity among individual patients. The quantitative measurement of Notch pathway activity is therefore essential to identify patients who could benefit from targeted treatment.
View Article and Find Full Text PDFSecreted growth factors can act as morphogens that form spatial concentration gradients in developing organs, thereby controlling growth and patterning. For some morphogens, adaptation of the gradients to tissue size allows morphological patterns to remain proportioned as the organs grow. In the zebrafish pectoral fin, we found that BMP signaling forms a two-dimensional gradient.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFSignal transduction pathways are important in physiology and pathophysiology. Targeted drugs aim at modifying pathogenic pathway activity, e.g.
View Article and Find Full Text PDFDuring asymmetric division, fate assignation in daughter cells is mediated by the partition of determinants from the mother. In the fly sensory organ precursor cell, Notch signalling partitions into the pIIa daughter. Notch and its ligand Delta are endocytosed into Sara endosomes in the mother cell and they are first targeted to the central spindle, where they get distributed asymmetrically to finally be dispatched to pIIa.
View Article and Find Full Text PDFNucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex.
View Article and Find Full Text PDFDuring asymmetric division, fate determinants at the cell cortex segregate unequally into the two daughter cells. It has recently been shown that Sara (Smad anchor for receptor activation) signalling endosomes in the cytoplasm also segregate asymmetrically during asymmetric division. Biased dispatch of Sara endosomes mediates asymmetric Notch/Delta signalling during the asymmetric division of sensory organ precursors in Drosophila.
View Article and Find Full Text PDFCells at different positions in a developing tissue receive different concentrations of signaling molecules, called morphogens, and this influences their cell fate. Morphogen concentration gradients have been proposed to control patterning as well as growth in many developing tissues. Some outstanding questions about tissue patterning by morphogen gradients are the following: What are the mechanisms that regulate gradient formation and shape? Is the positional information encoded in the gradient sufficiently precise to determine the positions of target gene domain boundaries? What are the temporal dynamics of gradients and how do they relate to patterning and growth? These questions are inherently quantitative in nature and addressing them requires measuring morphogen concentrations in cells, levels of downstream signaling activity, and kinetics of morphogen transport.
View Article and Find Full Text PDFA multitude of biological processes that involve multiple interaction partners are observed by two-color microscopy. Here we describe an analysis method for the robust quantification of correlation between signals in different color channels: particle image cross-correlation spectroscopy (PICCS). The method, which exploits the superior positional accuracy obtained in single-object and single-molecule microscopy, can extract the correlation fraction and length scale.
View Article and Find Full Text PDFHeterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems.
View Article and Find Full Text PDFType IB DNA topoisomerases cleave and rejoin one strand of the DNA duplex, allowing for the removal of supercoils generated during replication and transcription. In addition, electron microscopy of cellular and viral TopIB-DNA complexes has suggested that the enzyme promotes long-range DNA-DNA crossovers and synapses. Here, we have used the atomic force microscope to visualize and quantify the interaction between vaccinia topoisomerase IB (vTopIB) and DNA.
View Article and Find Full Text PDF