This study introduces a quantitative risk assessment (QRA) model aimed at evaluating the risk of invasive listeriosis linked to the consumption of ready-to-eat (RTE) smoked and gravad fish. The QRA model, based on published data, simulates the production process from fish harvest through to consumer intake, specifically focusing on smoked brine-injected, smoked dry-salted, and gravad fish. In a reference scenario, model predictions reveal substantial probabilities of lot and pack contamination at the end of processing (38.
View Article and Find Full Text PDFThe objective of this opinion was to determine if any wild caught fish species, originating from specific fishing grounds and consumed in the EU/EFTA could be considered free of zoonotic parasites. In this Opinion the term 'fishery products' only refers to fresh finfish. As there are multiple fish species and numerous potential parasites, sp.
View Article and Find Full Text PDFA quantitative risk assessment (QRA) model was developed to evaluate the risk of invasive listeriosis from the consumption of non-ready-to-eat (non-RTE) frozen vegetables. On a lot basis, the QRA model simulates concentration and prevalence in a "Processing module" that comprises blanching, potential recontamination and packaging, any post-packaging inactivation treatment, and within-lot end-product testing and in a subsequent "Consumer's handling module" that encompasses portioning of frozen vegetables, defrosting, and cooking. Based on available published data, the model was coded in nine sequential R functions designed to assess the effectiveness of blanching, the improvement in processing environment hygiene, the implementation of sampling schemes at the end of processing, and improved consumer instructions on the product's package.
View Article and Find Full Text PDFOne of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry.
View Article and Find Full Text PDFThe European Commission asks scientific and technical assistance from EFSA to determine the impact of the revision of the Australian monitoring programme on its ability to detect microbiological contamination. Considering that, in 2010, the European Commission determined the current Australian monitoring programme to be equivalent to the EU requirements for microbiological monitoring further to an EFSA scientific assessment, the current and proposed programmes were described and the total number of alerts was compared using a probabilistic modelling approach. In the current programme, only beef and sheep carcasses are monitored using three-class moving window sampling plans, while in the proposed programme, carcass, bulk meat, primal and offal are monitored using four two-class sampling plans and testing is excluded.
View Article and Find Full Text PDFConsumers can be exposed to many foodborne biological hazards that cause diseases with varying outcomes and incidence and, therefore, represent different levels of public health burden. To help the French risk managers to rank these hazards and to prioritize food safety actions, we have developed a three-step approach. The first step was to develop a list of foodborne hazards of health concern in mainland France.
View Article and Find Full Text PDFA review of quantitative risk assessment (QRA) models of in produce was carried out, with the objective of appraising and contrasting the effectiveness of the control strategies placed along the food chains. Despite nine of the thirteen QRA models recovered being focused on fresh or RTE leafy greens, none of them represented important factors or sources of contamination in the primary production, such as the type of cultivation, water, fertilisers or irrigation method/practices. Cross-contamination at processing and during consumer's handling was modelled using transfer rates, which were shown to moderately drive the final risk of listeriosis, therefore highlighting the importance of accurately representing the transfer coefficient parameters.
View Article and Find Full Text PDFBetter knowledge regarding the dose-response (DR) model is needed to refine the assessment of the risk of foodborne listeriosis. In 2018, the European Food Safety Agency (EFSA) derived a lognormal Poisson DR model for 14 different age-sex sub-groups, marginally to strain virulence. In the present study, new sets of parameters are developed by integrating the EFSA model for these sub-groups together with three classes of strain virulence characteristics ("less virulent", "virulent", and "more virulent").
View Article and Find Full Text PDFInvasive listeriosis, due to its severe nature in susceptible populations, has been the focus of many quantitative risk assessment (QRA) models aiming to provide a valuable guide in future risk management efforts. A review of the published QRA models of in seafood was performed, with the objective of appraising the effectiveness of the control strategies at different points along the food chain. It is worth noting, however, that the outcomes of a QRA model are context-specific, and influenced by the country and target population, the assumptions that are employed, and the model architecture itself.
View Article and Find Full Text PDFA review of the published quantitative risk assessment (QRA) models of in meat and meat products was performed, with the objective of appraising the intervention strategies deemed suitable for implementation along the food chain as well as their relative effectiveness. A systematic review retrieved 23 QRA models; most of them (87%) focused on ready-to-eat meat products and the majority (78%) also covered short supply chains (end processing/retail to consumption, or consumption only). The processing-to-table scope was the choice of models for processed meats such as chorizo, bulk-cooked meat, fermented sausage and dry-cured pork, in which the effects of processing were simulated.
View Article and Find Full Text PDFA review of the published quantitative risk assessment (QRA) models of in dairy products was undertaken in order to identify and appraise the relative effectiveness of control measures and intervention strategies implemented at primary production, processing, retail, and consumer practices. A systematic literature search retrieved 18 QRA models, most of them (9) investigated raw and pasteurized milk cheeses, with the majority covering long supply chains (4 farm-to-table and 3 processing-to-table scopes). On-farm contamination sources, either from shedding animals or from the broad environment, have been demonstrated by different QRA models to impact the risk of listeriosis, in particular for raw milk cheeses.
View Article and Find Full Text PDFAt the beginning of the COVID-19 pandemic, several contamination clusters were reported in food-processing plants in France and several countries worldwide. Therefore, a need arose to better understand viral transmission in such occupational environments from multiple perspectives: the protection of workers in hotspots of viral circulation; the prevention of supply disruption due to the closure of plants; and the prevention of cluster expansion due to exports of food products contaminated by the virus to other locations. This paper outlines a simulation-based approach (using agent-based models) to study the effects of measures taken to prevent the contamination of workers, surfaces, and food products.
View Article and Find Full Text PDFExposure to chemical contaminants found in foods has been associated with various adverse health effects. Burden of disease studies are increasingly used to estimate the public health impact of such exposures. The aims of this study were to estimate the burden of disease due to dietary exposure to four chemicals in France in 2019 (lead (Pb), cadmium (Cd), methylmercury (MeHg), and inorganic arsenic (i-As)), and to develop harmonized methods that can be applied for other chemicals and countries.
View Article and Find Full Text PDFListeria monocytogenes can grow under stressful conditions and contaminate various food categories. Progresss in DNA sequencing-based identification methods, such as multi-locus sequence typing (MLST) now allow for more accurate characterization of pathogens. L.
View Article and Find Full Text PDFproduces Botulinum neurotoxins (BoNTs), causing a rare but potentially deadly type of food poisoning called foodborne botulism. This review aims to provide information on the bacterium, spores, toxins, and botulisms, and describe the use of physical treatments (e.g.
View Article and Find Full Text PDFis the main causative agent of botulism, a neurological disease encountered in humans as well as animals. Nine types of botulinum neurotoxins (BoNTs) have been described so far. Amongst these "toxinotypes," the A, the B and E are the most frequently encountered in humans while the C, D, C/D and D/C are mostly affecting domestic and wild birds as well as cattle.
View Article and Find Full Text PDFBotulism is a human and animal neurological disease caused by the action of bacterial neurotoxins (botulinum toxins) produced by bacteria from the genus . This disease induces flaccid paralysis that can result in respiratory paralysis and heart failure. Due to its serious potential impact on public health, botulism is a closely monitored notifiable disease in France through a case-based passive surveillance system.
View Article and Find Full Text PDFMonkeypox (MPX) is a zoonotic infectious disease caused by (MPXV), an enveloped DNA virus belonging to the family and the genus. Since early May 2022, a growing number of human cases of Monkeypox have been reported in non-endemic countries, with no history of contact with animals imported from endemic and enzootic areas, or travel to an area where the virus usually circulated before May 2022. This qualitative risk assessment aimed to investigate the probability that MPXV transmission occurs through food during its handling and consumption.
View Article and Find Full Text PDFSARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), a virus causing severe acute respiratory disease in humans, emerged in late 2019. This respiratory virus can spread via aerosols, fomites, contaminated hands or surfaces as for other coronaviruses. Studying their persistence under different environmental conditions represents a key step for better understanding the virus transmission.
View Article and Find Full Text PDFFrom a historically rare serotype, subsp. Dublin slowly became one of the most prevalent in cattle and raw milk cheese in some regions of France. We present a retrospective genomic analysis of 480 .
View Article and Find Full Text PDF() is a ubiquitous bacterium that causes the serious foodborne illness listeriosis. Although soil is a primary reservoir and a central habitat for , little information is available on the genetic features underlying the fitness of strains in this complex habitat. The aim of this study was to identify (i) correlations between the strains fitness in soil, their origin and their phylogenetic position (ii) identify genetic markers allowing to survive in the soil.
View Article and Find Full Text PDFIn response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing.
View Article and Find Full Text PDF