Oleic acid is a monounsaturated fatty acid increasing oil oxidative stability. High content of oleic acid is thus a valuable trait in oilseed crops. Sunflower (Helianthus annuus L.
View Article and Find Full Text PDFVerticillium wilt is a major threat to many crops, among them alfalfa (). The model plant , a close relative of alfalfa was used to study the genetic control of resistance towards a new isolate. The accidental introduction of pathogen strains through global trade is a threat to crop production and such new strains might also be better adapted to global warming.
View Article and Find Full Text PDFGlobal warming is expected to have a direct impact on plant disease patterns in agro-eco-systems. However, few analyses report the effect of moderate temperature increase on disease severity due to soil-borne pathogens. For legumes, modifications of root plant-microbe interactions either mutualistic or pathogenic due to climate change may have dramatic effects.
View Article and Find Full Text PDFIntraspecific diversity of the immune grape Michaux. can serve as a rich source of valuable resistance loci to the most widespread pathogens and pests of grapevine. While only one resistance locus has been introgressed from to the gene pool, a number of other genes conferring resistance to powdery mildew and downy mildew have been identified in various cultivars.
View Article and Find Full Text PDFTocopherols are antioxidants that preserve oil lipids against oxidation and serve as a natural source of vitamin E in the human diet. Compared with other major oilseeds like rapeseed and soybean, sunflower (Helianthus annuus L.) exhibits low phenotypic diversity of tocopherol composition, both in wild and cultivated accessions from germplasm collections.
View Article and Find Full Text PDFZero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding.
View Article and Find Full Text PDFGuar gum, a polysaccharide derived from guar seeds, is widely used in a variety of industrial applications, including oil and gas production. Although guar is mostly propagated in India, interest in guar as a new industrial legume crop is increasing worldwide, demanding the development of effective tools for marker-assisted selection. In this paper, we report a wide-ranging set of 4907 common SNPs and 327 InDels generated from RADseq genotyping data of 166 guar plants of different geographical origin.
View Article and Find Full Text PDFGuar ( (L.) Taub.) is an annual legume crop native to India and Pakistan.
View Article and Find Full Text PDFThe explosive growth of genomic data provides an opportunity to make increased use of sequence variations for phenotype prediction. We have developed a prediction machine for quantitative phenotypes (WhoGEM) that overcomes some of the bottlenecks limiting the current methods. We demonstrated its performance by predicting quantitative disease resistance and quantitative functional traits in the wild model plant species, Medicago truncatula, using geographical locations as covariates for admixture analysis.
View Article and Find Full Text PDFMedicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula.
View Article and Find Full Text PDFThe infection of the model legume Medicago truncatula with Ralstonia solanacearum GMI1000 gives rise to bacterial wilt disease via colonisation of roots. The root and leaf responses to early infection (1 and 3 days post infection) were characterised to investigate the molecular mechanisms of plant resistance or susceptibility. A proteomics approach based on pools of susceptible and resistant recombinant inbred lines was used to specifically target the mechanisms for tolerance.
View Article and Find Full Text PDFPlant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.
View Article and Find Full Text PDFResistance mechanisms to wilt are well-studied in tomato, cotton, and Arabidopsis, but much less in legume plants. Because legume plants establish nitrogen-fixing symbioses in their roots, resistance to root-attacking pathogens merits particular attention. The interaction between the soil-borne pathogen and the model legume was investigated using a resistant (A17) and a susceptible (F83005.
View Article and Find Full Text PDFDefense pathways and stress responses induced under Cd stress were illustrated in roots of hydroponically grown Medicago truncatula seedlings. Actually, the ascorbate-glutathione and antioxidative system, secondary metabolism events including peroxidases, phenolic compounds, and lignification launching, and developmental modifications were described. Cd (100 μM) initially increased reactive oxygen species, enhanced antioxidative (total SOD, CAT, and PRX) and ascorbate-glutathione-related metabolism enzymes (APX and MDAR), except in A17 and TN1.
View Article and Find Full Text PDFEnvironmental changes challenge plants and drive adaptation to new conditions, suggesting that natural biodiversity may be a source of adaptive alleles acting through phenotypic plasticity and/or micro-evolution. Crosses between accessions differing for a given trait have been the most common way to disentangle genetic and environmental components. Interestingly, such man-made crosses may combine alleles that never meet in nature.
View Article and Find Full Text PDFSix Medicago truncatula genotypes differing in cadmium susceptibility were used to test the effect of this heavy metal on mineral, carbohydrate and amino acid supply in growing radicles. Cadmium treatment caused alteration of macronutrient (Ca and K), microelement (Fe, Zn and Cu), carbohydrate (total soluble sugars (TSS), glucose, fructose and sucrose) and free amino acid (FAAS) accumulations. These mobilization changes differed in the tested genotypes.
View Article and Find Full Text PDFBackground: Legume roots show a remarkable plasticity to adapt their architecture to biotic and abiotic constraints, including symbiotic interactions. However, global analysis of miRNA regulation in roots is limited, and a global view of the evolution of miRNA-mediated diversification in different ecotypes is lacking.
Results: In the model legume Medicago truncatula, we analyze the small RNA transcriptome of roots submitted to symbiotic and pathogenic interactions.
Background: Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.
View Article and Find Full Text PDFOxidative disorders were triggered in the presence of Cd toxicity in early seedling growth of six Medicago truncatula genotypes. Interactions between root growth inhibition, cadmium uptake, as well as the occurrence of oxidative injury suggest differential responses of the genotypes, with susceptible or tolerant accessions. ROS enhancement was observed in situ and H₂O₂ content was measured, that did not seem related to tolerance or susceptibility.
View Article and Find Full Text PDFIn Europe, the stem and bulb nematode Ditylenchus dipsaci has been listed as a quarantine pest by EPPO: without any control, it may cause complete failure of alfalfa crops. Movement of nematodes associated with seeds is considered to be the highest-risk pathway for the spread of this pest. Since the 2010 official withdrawal of methyl bromide in Europe, and in the absence of any alternative chemical, fumigation of contaminated seed batches is no longer possible, which makes the production of nematode-free alfalfa seeds difficult to achieve and leads to unmarketable seed batches.
View Article and Find Full Text PDFRalstonia solanacearum is a major soilborne pathogen that attacks > 200 plant species, including major crops. To characterize MtQRRS1, a major quantitative trait locus (QTL) for resistance towards this bacterium in the model legume Medicago truncatula, genetic and functional approaches were combined. QTL analyses together with disease scoring of heterogeneous inbred families were used to define the locus.
View Article and Find Full Text PDFVerticillium wilt is a major threat to alfalfa (Medicago sativa) and many other crops. The model legume Medicago truncatula was used as a host for studying resistance and susceptibility to Verticillium albo-atrum. In addition to presenting well-established genetic resources, this wild plant species enables to investigate biodiversity of the response to the pathogen and putative crosstalk between disease and symbiosis.
View Article and Find Full Text PDFMedicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions.
View Article and Find Full Text PDF