Despite the intensive use of radiotherapy in clinical practice, its effectiveness depends on several factors. Several studies showed that the tumour response to radiation differs from one patient to another. The non-uniform response of the tumour is mainly caused by multiple interactions between the tumour microenvironment and healthy cells.
View Article and Find Full Text PDFOver the last decade there has been an extensive evolution in the Artificial Intelligence (AI) field. Modern radiation oncology is based on the exploitation of advanced computational methods aiming to personalization and high diagnostic and therapeutic precision. The quantity of the available imaging data and the increased developments of Machine Learning (ML), particularly Deep Learning (DL), triggered the research on uncovering "hidden" biomarkers and quantitative features from anatomical and functional medical images.
View Article and Find Full Text PDFWe present a multi-scale approach of tumor modeling in order to predict its evolution during radiotherapy. Within this context we focus on three different scales of tumor modeling: microscopic (individual cells in a voxel), mesoscopic (population of cells in a voxel) and macroscopic (whole tumor), with transition interfaces between these three scales. At the cellular level, the description is based on phase transfer probabilities in the cellular cycle.
View Article and Find Full Text PDFOne of the main issues in Systems Biology is to deal with semantic data integration. Previously, we examined the requirements for a reference conceptual model to guide semantic integration based on the systemic principles. In the present paper, we examine the usefulness of the Unified Modelling Language (UML) to describe and specify biological systems and processes.
View Article and Find Full Text PDF