Publications by authors named "Laurent Eyers"

Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. We present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks.

View Article and Find Full Text PDF

The denitration of 2,4,6-trinitrotoluene (TNT) can produce mono- or dinitro aromatic compounds susceptible to microbial mineralization. In the present study, denitration of TNT and other nitro aromatic compounds was investigated with a solid-phase extract obtained from the culture supernatant of Pseudomonas aeruginosa ESA-5 grown on a chemically defined aerobic medium. When the C18 solid-phase extract containing extracellular catalysts (EC) was incubated with TNT and NAD(P)H, we observed a significant release of nitrite.

View Article and Find Full Text PDF

Sustainable development requires the promotion of environmental management and a constant search for new technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation, i.e.

View Article and Find Full Text PDF

Denitration of 2,4,6-trinitrotoluene (TNT) was evaluated in oxygen-depleted enrichment cultures. These cultures were established starting with an uncontaminated or a TNT-contaminated soil inoculum and contained TNT as sole nitrogen source. Incubations were carried out in the presence or absence of ferrihydrite.

View Article and Find Full Text PDF

To gain insight into the impact of 2,4,6-trinitrotoluene (TNT) on soil microbial communities, we characterized the bacterial community of several TNT-contaminated soils from two sites with different histories of contamination and concentrations of TNT. The amount of extracted DNA, the total cell counts and the number of CFU were lower in the TNT-contaminated soils. Analysis of soil bacterial diversity by DGGE showed a predominance of Pseudomonadaceae and Xanthomonadaceae in the TNT-contaminated soils, as well as the presence of Caulobacteraceae.

View Article and Find Full Text PDF

A functional ANOVA analysis of the thermal dissociation of RNA hybridized to DNA microarrays was used to improve discrimination between two soil microbial communities. Following hybridization of in vitro transcribed 16S rRNA derived from uncontaminated and 2,4,6-trinitrotoluene contaminated soils to an oligonucleotide microarray containing group- and species-specific perfect match (PM) probes and mismatch (MM) variants, thermal dissociation was used to analyze the nucleic acid bound to each PM-MM probe set. Functional ANOVA of the dissociation curves generally discriminated PM-MM probe sets when Td values (temperature at 50% probe-target dissociation) could not.

View Article and Find Full Text PDF

Escherichia coli grew aerobically with 2,4,6-trinitrotoluene (TNT) as sole nitrogen source and caused TNT's partial denitration. This reaction was enhanced in nongrowing cell suspensions with 0.516 mol nitrite released per mol TNT.

View Article and Find Full Text PDF