Specific molecular recognition is routine for biology, but has proved difficult to achieve in synthetic systems. Carbohydrate substrates are especially challenging, because of their diversity and similarity to water, the biological solvent. Here we report a synthetic receptor for glucose, which is biomimetic in both design and capabilities.
View Article and Find Full Text PDFHerein we report a general liquid-mediated pathway for the growth of continuous polymeric carbon nitride (C3N4) thin films. The deposition method consists of the use of supramolecular complexes that transform to the liquid state before direct thermal condensation into C3N4 solid films. The resulting films exhibit continuous porous C3N4 networks on various substrates.
View Article and Find Full Text PDFWe present an efficient synthesis of a modified carbon nitride photocatalyst by using supramolecular complexes of cyanuric acid, melamine, and 2,4-diamino-6-phenyl-1,3,5-triazine as precursors. We combined a self-templating approach for morphology control with the modification of photophysical properties by altering the chemical structure of the material. The resulting carbon nitrides exhibit high surface areas, defined morphologies, and a strong enhancement of light absorption in the visible-light region.
View Article and Find Full Text PDFAlthough solution self-assembly of block copolymers (BCPs) represents one of the most promising approaches to the creation of nanoparticles from soft matter, the formation of non-centrosymmetric nanostructures with shape anisotropy remains a major challenge. Through a combination of crystallization-driven self-assembly of crystalline-coil BCPs in solution and selective micelle corona cross-linking, we have created short (about 130 nanometers), monodisperse cylindrical seed micelles that grow unidirectionally. These nanostructures grow to form long, non-centrosymmetric cylindrical A-B and A-B-C block co-micelles upon the addition of further BCPs.
View Article and Find Full Text PDFThe metallation of the cyclopentadienyl (Cp) ligands of poly(ferrocenyldimethylsilane) (PFDMS) can be performed by reaction with the Schlosser's base pair t-BuLi/KOt-Bu in THF. Subsequent treatment with a series of electrophiles affords a range of Cp-substituted polymers with up to an average of 1.8 new substituents per repeating unit.
View Article and Find Full Text PDFSkeletal Ni, produced by the selective leaching of Al from a Ni/Al alloy, has been successfully employed in the catalytic dehydrogenation of various amine-borane adducts. The combination of low cost and facile single-step synthesis make this system a potentially attractive alternative to the previously described precious metal and other first-row metal catalysts. The heterogeneous nature of the catalyst facilitates convenient product purification, and this is the first such system to be based on a first-row transition metal.
View Article and Find Full Text PDFThe self-assembly of block copolymers in selective solvents represents a powerful approach to functional core-shell nanoparticles. Crystallization of the core can play a critical role in directing self-assembly toward desirable, nonspherical morphologies with low mean interfacial curvature. Moreover, epitaxial growth processes have been implicated in recent advances that permit access to monodisperse cylinders, cylindrical block comicelles with segmented cores and/or coronas, and complex hierarchical architectures.
View Article and Find Full Text PDFNon-spherical nanostructures derived from soft matter and with uniform size-that is, monodisperse materials-are of particular utility and interest, but are very rare outside the biological domain. We report the controlled formation of highly monodisperse cylindrical block copolymer micelles (length dispersity < or = 1.03; length range, approximately 200 nm to 2 microm) by the use of very small (approximately 20 nm) uniform crystallite seeds that serve as initiators for the crystallization-driven living self-assembly of added block-copolymer unimers with a crystallizable, core-forming metalloblock.
View Article and Find Full Text PDFIrradiation of silicon-bridged [1]ferrocenophane [Fe(eta-C(5)H(4))(2)SiMe(2)] (1) in the presence of substitutionally labile Lewis bases such as 4,4'-dimethyl-2,2'-bipyridine (Me(2)bpy) initiates ring-opening polymerization and oligomerization via cleavage of an iron-cyclopentadienyl bond. A distribution of cyclic polyferrocenylsilane c-PFS (PFS = [Fe(eta-C(5)H(4))(2)SiMe(2)](n)) and a series of cyclic oligomers (2(2)-2(7)) were isolated by column chromatography and fully characterized. Varying temperature and concentration were found to influence the molecular weight distribution and the ratio of polymer to oligomer products, enabling the formation of c-PFS with molecular weights >100 kDa.
View Article and Find Full Text PDF