Publications by authors named "Laurent Bigot"

In this work, we demonstrate and evaluate a new design of micro-structured core erbium-doped few-mode fiber to be used as optical amplifier in the context of mode-division multiplexing. This concept is proposed so as to better control the distribution of the Er ions in the core area, thus permitting to adjust the overall differential modal gains between the different signal modes. The design presented here consists of 19 erbium-doped inclusions embedded in a pedestal geometry guiding 10 modes in the C-band.

View Article and Find Full Text PDF

The incorporation of Ce ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to favor the Ce oxidation state. Structural analysis and photophysical investigations are performed on the obtained glass rods.

View Article and Find Full Text PDF

This Letter reports on a large mode area pixelated Bragg fiber in which some high refractive index rods were replaced by boron-doped rods that allows polarization maintaining behavior while keeping single-mode behavior. The realized all-solid fiber has a core diameter of 35 µm. The fundamental mode is circular with a 25 µm mode field diameter around 1 µm wavelength, and the polarization extinction ratio reaches 30 dB.

View Article and Find Full Text PDF

In third generation sequencing, the production of quality data requires the selection of molecules longer than ∼20 kbp, but the size selection threshold of most purification technologies is smaller than this target. Here, we describe a technology operated in a capillary with a tunable selection threshold in the range of 3 to 40 kbp controlled by an electric field. We demonstrate that the selection cut-off is sharp, the purification yield is high, and the purification throughput is scalable.

View Article and Find Full Text PDF

Hollow core optical fibers are normally passive light transport components. In contrast, within this Letter, we numerically investigate the possibility of using them as optical amplifiers, through the adoption of a novel fiber structure. We show that optical amplification can be achieved in hollow core fibers, where the cladding region is partially doped and composed of both resonant and anti-resonant elements.

View Article and Find Full Text PDF

We propose and fabricate a novel ring-core photonic crystal fiber made of a circular ring core surrounded by a cladding constituted of air holes organized in a first circular ring surrounded by hexagonal ones. The fiber efficiently supports four different groups of orbital angular momentum (OAM) modes. The effective indices of spin-orbit aligned and spin-orbit anti-aligned modes in the same OAM modes group are separated by at least 2.

View Article and Find Full Text PDF

We developed a generalized field-propagating model for active optical fibers that takes into account mode beating and mode coupling through the amplifying medium. We applied the model to the particular case of a few-mode erbium doped fiber amplifier. Results from the model predict that mode coupling mediated by the amplifying medium is very low.

View Article and Find Full Text PDF

Accurate control of both the doping distribution inside the fiber core and the low refractive index contrast between the fiber core and cladding materials is essential for the development of high-power fiber lasers based on the use of single-mode large-mode-area (LMA) optical fibers. Herein, sol-gel monolithic F/Yb-codoped silica glasses were prepared from porous large silica xerogels doped with ytterbium salt solution, which had been subjected to fluorination with hexafluoroethane gas, before subsequent sintering. The fluorine content inside the doped glass has been varied by adjusting the fluorination duration.

View Article and Find Full Text PDF

Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er -doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances.

View Article and Find Full Text PDF

This paper reports the design and the fabrication of an all-solid photonic bandgap fiber with core diameter larger than 100 µm, a record effective mode area of about 3700 µm at 1035 nm and robust single-mode behavior on propagation length as short as 90 cm. These properties are obtained by using a pixelated Bragg fiber geometry together with an heterostructuration of the cladding and the appropriated generalized half wave stack condition applied to the first three higher order modes. We detail the numerical study that permitted to select the most efficient cladding geometry and present the experimental results that validate our approach.

View Article and Find Full Text PDF

We report on the study of a possible first step integration of mode division multiplexed optical component for single-mode fiber networks. State-of-the-art on few-mode erbium-doped fiber amplifiers is used to integrate the amplification function in a single component, which is expected to save energy in comparison to parallelized active components. So as to limit the impact of modal cross-talk, an elliptical-core few-mode erbium-doped fiber has been used to assemble an amplifier sharing setup for different single mode fibers, using non-degenerate modes.

View Article and Find Full Text PDF

We report, through numerical simulations and experimental data, the first successful fabrication of a polarization maintaining single-mode fiber delivering a flat top intensity profile at 1.05 µm. A high quality flat mode was obtained and single-mode behavior was checked by shifting the injection and by S² imaging method.

View Article and Find Full Text PDF

A new Pixelated Bragg Fiber design showing improved optical performances in terms of single-mode behavior and effective area is presented. The cladding is made of 3 rings of cylindrical high refractive index rods (pixels) in which some pixels are removed to act as a modal sieve for an improved rejection of Higher Order Modes (HOMs). Two half-wave-stack conditions are used to increase the confinement losses of the 3 first HOMs: LP11 and LP02-LP21 guided core modes.

View Article and Find Full Text PDF

We report on an all-fiber system delivering more than 100 μJ pulses with a top-hat beam output in the few nanoseconds regime at 10 kHz. The linearly polarized flattened beam is obtained thanks to a 3-mm-long single-mode microstructured fiber spliced to the amplifier's output.

View Article and Find Full Text PDF

We investigate numerically and experimentally the spectral correlation between multiple modulation instability (MI) side lobes in a dispersion oscillating fiber. By leveraging the dispersive Fourier transformation, we acquire instantaneous spectra and investigate the energy correlation between individual MI sidebands through scattergrams. We found that conjugate MI side lobes are strongly correlated while other combinations experience a very low degree of correlation, revealing that parametric processes related to each side lobe pair act quasi-independently.

View Article and Find Full Text PDF

Design and experimental characterization of Er(3+)-doped fiber amplifiers supporting 6 spatial modes in wavelength division multiplexing regime are reported. The study is first focused on Er(3+)-doped circular ring-structured profiles accessible with conventional fiber manufacturing techniques. However, these fiber designs, optimized for gain equalization, prove to be difficult to obtain experimentally.

View Article and Find Full Text PDF

A new strategy to obtain a single-mode fiber with a flattened intensity profile distribution is presented. It is based on the use of an OVD-made high index ring deposited on a silica rod having a refractive index slightly lower than the silica used for the microstructured cladding. Using this strategy, we realized the first single-mode fiber with a quasi-perfect top-hat intensity profile around 1 µm.

View Article and Find Full Text PDF

We report the fabrication and characterization of a photonic crystal fiber (PCF) having a sol-gel core doped with ionic copper. Optical measurements demonstrate that the ionic copper is preserved in the silica glass all along the preparation steps up to fiber drawing. The photoluminescence results clearly show that such an ionic copper-doped fiber constitutes a potential candidate for UV-C (200-280 nm) radiation dosimetry.

View Article and Find Full Text PDF

Numerical and experimental study of a Few-Mode (FM) Erbium Doped Fiber Amplifier (EDFA) suitable for mode division multiplexing (MDM) is reported. Based on numerical simulations, a Few-Mode Erbium Doped Fiber (FM-EDF) has been designed to amplify four mode groups and to equally amplify LP11 and LP21 mode groups with gains greater than 20 dB and with a differential modal gain of less than 1 dB. Experimental results confirmed the simulations with a good concordance.

View Article and Find Full Text PDF

A new type of Anti Resonant Reflecting Optical Waveguide (ARROW) fiber with a low refractive index contrast is reported. This waveguide is similar to a Bragg fiber for which the high index rings are replaced by discontinuous rings made of circular High Index Inclusions (HII). As compared to conventional Bragg fibers, such a new structure enables true Photonic BandGap (PBG) guidance and limits the number of cladding modes located within the high index regions, thus enhancing the guiding properties.

View Article and Find Full Text PDF

Ionic copper- or silver-doped dense silica rods have been prepared by sintering sol-gel porous silica xerogels doped with ionic precursors. The precipitation of Cu or Ag nanoparticles was achieved by heat treatment under hydrogen followed by annealing under air atmosphere. The surface plasmon resonance bands of copper and silver nanoparticles have been clearly observed in the absorption spectra.

View Article and Find Full Text PDF

We demonstrate a single-polarization all-solid hybrid microstructured optical fiber with a UV-induced Bragg grating. A strong (∼20 dB) UV-induced Bragg grating was inscribed within the 30 nm-wide single-polarization window of the fiber, producing polarized Bragg reflection. The sharp band-edge cutoff allows a large polarization-extinction ratio of the Bragg reflection.

View Article and Find Full Text PDF

Fiber Bragg Gratings with reflectivity up to 25 dB have been photo-written in the core of a 2D all-solid Photonic Bandgap Fiber without modification of the guiding properties of the fiber. This result is obtained by combining an appropriate glass composition for the high index inclusions constituting the micro-structured cladding and a photosensitive low index core. Couplings of the fundamental core guided mode with cladding modes are investigated and compared to theoretical predictions.

View Article and Find Full Text PDF

Several strong narrowband resonances are observed in the transmission spectra of fiber Bragg gratings photo-written in photonic crystal fiber that has a refractive index-neutral germanium/fluorine co-doped core. Experimental results for the strain, temperature and refractive index sensitivities of these mode resonances are reported and compared to those of conventional single mode fiber. In particular, we identify three kinds of resonances whose relative sensitivities to strain, temperature and refractive index are markedly different and present numerical simulations to explain these properties.

View Article and Find Full Text PDF

A Genetic Algorithm (GA) is used to design photonic crystal fiber structures with user-defined chromatic dispersion properties. This GA is combined with a full vectorial finite element method in order to determine the effective index of propagation of the modes and then, the chromatic dispersion of structures generated by GA. This method proves to be a powerful tool for solving this inverse problem.

View Article and Find Full Text PDF