Background: Local policymakers require information about public health, housing and well-being at small geographical areas. A municipality can for example use this information to organize targeted activities with the aim of improving the well-being of their residents. Surveys are often used to gather data, but many neighborhoods can have only few or even zero respondents.
View Article and Find Full Text PDFBackground: Local policy makers increasingly need information on health-related indicators at smaller geographic levels like districts or neighbourhoods. Although more large data sources have become available, direct estimates of the prevalence of a health-related indicator cannot be produced for neighbourhoods for which only small samples or no samples are available. Small area estimation provides a solution, but unit-level models for binary-valued outcomes that can handle both non-linear effects of the predictors and spatially correlated random effects in a unified framework are rarely encountered.
View Article and Find Full Text PDF