The rarity of spontaneous cancer in amphibians, and the difficulty of inducing cancer in these lower vertebrates, suggest that they possess an effective system for resistance to the development of cancer. The first part of this narrative presents evidence for cancer resistance in amphibians, and then a variety of studies designed to help understand the physiological basis for this resistance are reviewed. Here, our emphasis is on evidence with regard to the role that apoptosis might play.
View Article and Find Full Text PDFWith the use of in vitro methods and cell lines, functional aspects of apoptosis in the Xenopus laevis B3/B7 and mouse EL4 thymoma cell lines are revealed. Moreover, by using information gleaned from digital imaging and immunocytochemistry, changes in locations of key proteins implicated in apoptotic anti-cancer responses, e.g.
View Article and Find Full Text PDFWhile spontaneous tumours may occasionally develop in inbred and isogenic strains of Xenopus laevis, the South African clawed toad, they are extremely rare in natural and laboratory populations. Only two amphibian neoplasms, the renal adenocarcinoma of Rana pipiens and the lymphosarcoma of Xenopus laevis, have been extensively explored. Amphibians are resistant to the development of neoplasia, even following exposure to "direct-acting" chemical carcinogens such as N-methyl-N-nitrosourea, that are highly lymphotoxic, thus diminishing immune reactivity.
View Article and Find Full Text PDFJ Exp Zool A Ecol Genet Physiol
February 2007
Microgel cell electrophoresis has been used with various species to measure breakage of DNA and DNA repair following exposure to the radiomimetic antibiotic, bleomycin. With humans, a high degree of DNA damage is considered to be predictive of cancer susceptibility. Non-isogeneic Xenopus laevis, the South African clawed toad, rarely develop spontaneous or induced cancers.
View Article and Find Full Text PDF