Publications by authors named "Laurene Youssef"

Photonic qubits should be controllable on-chip and noise-tolerant when transmitted over optical networks for practical applications. Furthermore, qubit sources should be programmable and have high brightness to be useful for quantum algorithms and grant resilience to losses. However, widespread encoding schemes only combine at most two of these properties.

View Article and Find Full Text PDF

We report on a signal-to-noise ratio characterizing the generation of identical photon pairs of more than 4 orders of magnitude in a ring resonator system. Parasitic noise, associated with single-pump spontaneous four-wave mixing, is essentially eliminated by employing a novel system design involving two resonators that are linearly uncoupled but nonlinearly coupled. This opens the way to a new class of integrated devices exploiting the unique properties of identical photon pairs in the same optical mode.

View Article and Find Full Text PDF

Efficient nonlinear phenomena in integrated waveguides imply the realization in a nonlinear material of tightly confining waveguides sustaining guided modes with a small effective area with ultra-low propagation losses as well as high-power damage thresholds. However, when the waveguide cross-sectional dimensions keep shrinking, propagation losses and the probability of failure events tend to increase dramatically. In this work, we report both the fabrication and testing of high-confinement, ultralow-loss silicon nitride waveguides and resonators showing average attenuation coefficients as low as ∼3 dB/m across the S-, C-, and L bands for 1.

View Article and Find Full Text PDF