Mineral nutrient uptake and assimilation is closely coordinated with the production of photosynthate to supply nutrients for growth. In Arabidopsis (Arabidopsis thaliana), nitrate uptake from the soil is mediated by genes encoding high- and low-affinity transporters that are transcriptionally regulated by both nitrate and photosynthate availability. In this study, we have studied the interactions of nitrate and glucose (Glc) on gene expression, nitrate transport, and growth using glucose-insensitive2-1 (gin2-1), which is defective in sugar responses.
View Article and Find Full Text PDFBackground: Carbon (C) and nitrogen (N) metabolites can regulate gene expression in Arabidopsis thaliana. Here, we use multi-network analysis of microarray data to identify molecular networks regulated by C and N in the Arabidopsis root system.
Results: We used the Arabidopsis whole genome Affymetrix gene chip to explore global gene expression responses in plants exposed transiently to a matrix of C and N treatments.
Background: Carbon and nitrogen are two signals that influence plant growth and development. It is known that carbon- and nitrogen-signaling pathways influence one another to affect gene expression, but little is known about which genes are regulated by interactions between carbon and nitrogen signaling or the mechanisms by which the different pathways interact.
Results: Microarray analysis was used to study global changes in mRNA levels due to carbon and nitrogen in Arabidopsis thaliana.
Here, we report the systematic exploration and modeling of interactions between light and sugar signaling. The data set analyzed explores the interactions of sugar (sucrose) with distinct light qualities (white, blue, red, and far-red) used at different fluence rates (low or high) in etiolated seedlings and mature green plants. Boolean logic was used to model the effect of these carbon/light interactions on three target genes involved in nitrogen assimilation: asparagine synthetase (ASN1 and ASN2) and glutamine synthetase (GLN2).
View Article and Find Full Text PDF